销售预测
销售预测是指对未来特定时间内,全部产品或特定产品的销售数量与销售金额的估计。销售预测是在充分考虑未来各种影响因素的基础上,结合本企业的销售实绩,通过一定的分析方法提出切实可行的销售目标。
销售预测是根据以往的销售情况以及使用系统内部内置或用户自定义的销售预测模型获得的对未来销售情况的预测。销售预测可以直接生成同类型的销售计划。销售计划的中心任务之一就是销售预测,无论企业的规模大小、销售人员的多少,销售预测影响到包括计划、预算和销售额确定在内的销售管理的各方面工作。
销售预测的影响因素
尽管销售预测十分重要,但进行高质量的销售预测却并非易事。在进行预测和选择最合适的预测方法之前,了解对销售预测产生影响的各种因素是非常重要的。
一般来讲,在进行销售预测时考虑两大类因素:
1、外界因素
①需求动向
需求是外界因素之中最重要的一项.如流行趋势、爱好变化、生活形态变化、人口流动等,均可成为产品(或服务)需求的质与量方面的影响因素,因此,必须加以分析与预测。企业应尽量收集有关对象的市场资料、市场调查机构资料、购买动机调查等统计资料.以掌握市场的需求动向。
②经济变动
销售收入深受经济变动的影响,经济因素是影响商品销售的重要因素,为了提高销售预测的准确性,应特别关注商品市场中的供应和需求情况。尤其近几年来科技、信息快速发展,更带来无法预测的影响因素,导致企业销售收入波动。因此,为了正确预测,需特别注意资源问题的未来发展、政府及财经界对经济政策的见解以及基础工业、加工业生产、经济增长率等指标变动情况。尤其要关注突发事件对经济的影响。
③同业竞争动向
销售额的高低深受同业竞争者的影响,古人云“知己知彼.百战不殆”。为了生存,必须掌握对手在市场的所有活动。例如,竞争对手的目标市场在哪里,产品价格高低,促销与服务措施等等。
④政府、消费者团体的动向
考虑政府的各种经济政策、方案措施以及消费者团体所提出的各种要求等。
2、内部因素
①营销策略
市场定位、产品政策、价格政策、渠道政策、广告及促销政策等变更对销售额所产生的影响。
②销售政策
考虑变更管理内容、交易条件或付款条件,销售方法等对销售额所产生的影响。
③销售人员
销售活动是一种以人为核心的活动,所以人为因素对于销售额的实现具有相当深远的影响力,这是我们不能忽略的。
④生产状况
货源是否充足,能否保证销售需要等。
销售预测的作用
1、通过销售预测,可以调动销售人员的积极性,促使产品尽早实现销售,以完成使用价值向价值的转变。
2、企业可以以销定产,根据销售预测资料,安排生产,避免产品积压。
销售预测的内容
销售预测包括以下内容:
1、预测目标:首先,需要确定预测的目标,例如预测未来一个月、一个季度或一年的销售额。
2、数据收集:收集历史销售数据、市场趋势、竞争情况、客户反馈等信息,这些信息对于预测未来销售趋势至关重要。
3、数据清洗:对收集到的数据进行清洗和预处理,去除异常值和缺失值,以确保数据的准确性和可靠性。
4、预测模型:基于历史数据和当前市场趋势,选择合适的预测模型进行建模,例如线性回归、时间序列分析、机器学习等。
5、模型评估:对建好的预测模型进行评估和验证,确保模型具有良好准确性和可靠性。
6、预测结果:根据预测模型进行预测,得到未来销售额的预测值。
7、决策支持:将预测结果提供给决策者,帮助他们做出明智的决策,例如制定销售策略、调整库存等。
注意事项:
1、数据质量:销售预测的准确性很大程度上取决于数据的质量,因此需要确保数据的准确性和可靠性。
2、模型选择:选择合适的预测模型进行建模,需要根据数据特点和预测目标进行选择。
3、参数调整:在建模过程中,需要对模型参数进行调整和优化,以获得最佳预测效果。
4、结果验证:对预测结果进行验证和确认,以确保预测值的准确性和可靠性。
销售预测的方法
(一)销售预测的定性分析法
定性预测法是在预测人员具备丰富的实践经验和广泛的专业知识的基础上,根据其对事物的分析和主观判断能力对预测对象的性质和发展趋势作出推断的预测方法,如市场调研法和判断分析法。这类方法主要是在企业所掌握的数据资料不完备、不准确的情况下使用,以通过对经济形势、国内外科学技术发展水平、市场动态、产品特点和竞争对手情况等情况资料的分析研究,对本企业产品的未来销售情况作出质的判断。
1、市场调研法
市场调研法就是通过对某种产品在市场上的供需情况变动的详细调查,了解各因素对该产品市场销售的影响状况,并据以推测该种产品市场销售量的一种分析方法。
在这类方法下,其预测的基础是市场调查所取得的各种资料,然后根据产品销售的具体特点和调查所得资料情况,采用具体的预测方法进行预测。
2、判断分析法
判断分析法主要是根据熟悉市场未来变化的专家的丰富实践经验和综合判断能力,在对预测期销售情况进行综合分析研究以后所做出的产品销售趋势的判断。参与判断预测的专家既可以是企业内部人员,如销售部门经理和销售人员,也可以是企业外界的人员,如有关推销商和经济分析专家等。
判断分析法的具体方式一般可分为下列三种:
(1)意见汇集法
意见法也称主观判断法,它是由本企业熟悉销售业务、对于市场的未来发展变化的趋势比较敏感的领导人、主管人员和业务人员,根据其多年的实践经验集思广益,分析各种不同意见并对之进行综合分析评价后所进行的判断预测。这一方法产生依据是,企业内部的各有关人员由于工作岗位和业务范围及分工有所不同,尽管他们对各自的业务都比较熟悉,对市场状况及企业在竞争中的地位也比较清楚,但其对问题理解的广度和深度却往往受到一定的限制。在这种情况下就需要各有关人员既能对总的社会经济发展趋势和企业的发展战略有充分的认识,又能全面了解企业当前的销售情况,进行信息交流和互补,在此基础上经过意见汇集和分析,就能做出比较全面客观的销售判断。
①高级经理意见法
高级经理意见法是依据销售经理(经营者与销售管理者为中心)或其他高级经理的经验与直觉,通过一个人或所有参与者的平均意见求出销售预测值的方法。
②销售人员意见法
销售人员意见法是利用销售人员对未来销售进行预测。有时是由每个销售人员单独作出这些预测,有时则与销售经理共同讨论而作出这些预测。预测结果以地区或行政区划汇总,一级一级汇总,最后得出企业的销售预测结果。
③购买者期望法
许多企业经常关注新顾客、老顾客和潜在顾客未来的购买意向情况,如果存在少数重要的顾客占据企业大部分销售量这种情况,那么购买者期望法是很实用的。
这种预测方法是通过征询顾客或客户的潜在需求或未来购买商品计划的情况,了解顾客购买商品的活动、变化及特征等.然后在收集消费者意见的基础上分析市场变化,预测未来市场需求。
(2)特尔菲法
特尔菲法又称专家调查法,它是一种客观判断法,由美国兰德公司在本世纪四十年代首先倡导使用。它主要是采用通讯的方式,通过向见识广、学有专长的各有关专家发出预测问题调查表的方式来搜集和征询专家们的意见,并经过多次反复,综合、整理、归纳各专家的意见以后,作出预测判断。
(3)专家小组法
专家小组法也属于一种客观判断法,它是由企业组织各有关方面的专家组成预测小组,通过召开各种形式座谈会的方式,进行充分广泛的调查研究和讨论,然后运用专家小组的集体科研成果作出最后的预测判断。
(4)模拟顾客综合判断法
先请各位专家模拟成各种类型的顾客,通过比较本企业和竞争对手的产品质量、售后服务和销售条件等作出购买决策,然后把这些“顾客”准备购买本企业产品的数量加以汇总,形成一个销售预测值。
(二)销售预测的定量分析法
定量预测法主要是根据有关的历史资料,运用现代数学方法对历史资料进行分析加工处理,并通过建立预测模型来对产品的市场变动趋势进行研究并作出推测的预测方法,如趋势预测分析法和因果预测分析法。这类方法是在拥有尽可能多的数据资料的前提下运用,以便能通过对数据类型的分析,确定具体适用的预测方法对产品的市场需求作出量的估计。
1、趋势预测分析法
趋势预测分析法是应用事物发展的延续性原理来预测事物发展的趋势。首先把本企业的历年销售资料按时间的顺序排列下来,然后运用数理统计的方法来预计、推测计划期间的销售数量或销售金额,故亦称“时间序列预测分析法”。这类方法的优点是收集信息方便、迅速;缺点是对市场供需情况的变动因素未加考虑。
(1)算术平均法。
算术平均法是以过去若干期的销售量或销售额的算术平均数作为计划期的销售预测数。其计算公式如下:
(2)移动加权法。
移动加权平均法是先根据过去若干期的销售量或销售额,按其距离预测期的远近分别进行加权(近期所加权数大些,远期所加权数小些);然后计算其加权平均数,并以此作为计划期的销售预测值。所谓“移动”是指对计算平均数的时期不断向后推移。例如,预测7月份的销售量以4、5、6月份的历史资料为依据;若预测8月份的销售量,则以5、6、7月份的资料为准。一般情况下,预测数受近期实际销售的影响程度较大,因此越接近预测期的实际销售情况所加权数应越大些。
(3)指数平滑法。
指数平滑法就是遵循“重近轻远”的原则,对全部历史数据采用逐步衰减的不等加权办法进行数据处理的一种预测方法。指数平滑法通过对历史时间序列进行逐层平滑计算,从而消除随机因素的影响,识别经济现象基本变化趋势,并以此预测未来。它短期预测中最有效的方法。使用指数平滑系数来进行预测,对近期的数据观察值赋予较大的权重,而对以前各个时期的数据观察值则顺序的赋予递减的权重。指数平滑法是同类预测法中被认为是最精确的,因为最近的观察值已经包含了最多的未来情况的信息。
2、因果预测分析法
因果预测分析法,是利用事物发展的因果关系来推测事物发展趋势的方法。它一般是根据过去掌握的历史资料,找出预测对象的变量与其相关变量之间的依存关系,来建立相应的因果预测的数学模型。然后通过对数学模型的求解来确定对象在计划期的销售量或销售额。
因果预测所采用的具体方法较多,最常用而且最简单的是回归分析法。回归分析主要是研究事物变化中的两个或两个以上因素之间的因果关系,并找出其变化的规律,应用回归数学模型,预测事物未来的发展趋势。由于在现实的市场条件下,企业产品的销售量往往与某些变量因素(例如,国民生产总值、个人可支配的收入、人口、相关工业的销售量、需要的价格弹性或收入弹性等等)之间存在着一定的函数关系,因此我们可以利用这种关系,选择最恰当的相关因素建立起预测销售量或销售额的数学模型,这往往会比采用趋势预测分析法获得更为理想的预测结果。例如轮胎与汽车,面料、辅料与服装,水泥与建筑之间存在着依存关系,而且都是前者的销售量取决于后者的销售量。所以,可以利用后者现成的销售预测的信息,采用回归分析的方法来推测前者的预计销售量(额)。这种方法的优点是简便易行,成本低廉。回归分析法主要包括一元回归直线法(预测对象的相关因素有一个)与多元回归法(预测对象的相关因素有两个或两个以上)。
(1)一元回归直线法。
一元线性回归法是用途较为广泛的一种预测方法。一元线性回归法即最小二乘法,是用来处理两个变量之间具有的线性关系的一种方法。其具体做法是:
(2)多元回归法。
企业的经营活动往往受多方面因素的影响,即一个因变量和几个自变量存在依存关系。例如有的企业的产品是供应若干个其他企业生产用的零部件,因此生产零部件的企业的产品销售量受其他企业生产量的影响。在因变量同时受两个或两个以上的自变量的影响的情况下,就要用多元回归预测法进行预测。
3、时间序列分析法
时间序列分析法是利用变量与时间存在的相关关系,通过对以前数据的分析来预测将来的数据。在分析销售收入时,大家都懂得将销售收入按照年或月的次序排列下来,以观察其变化趋势。时间序列分析法现已成为销售预测中具有代表性的方法。
数据挖掘在销售预测中的应用
随着市场经济的发展和经济的全球化,企业面临着越来越残酷的市场竞争。企业要想赢得竞争、赢得客户,就必须在最快的时间内,以最低的成本将产品提供给客户,这使得进行正确及时的产品销售预测及由此产生的可靠的决策,成为现代企业成功的关键要素。由此,一些销售预测系统也应运而生。可是,随着计算机技术、网络技术、通讯技术和Intemet技术的发展和各个业务操作流程的自动化,企业产生了数以儿十或上百GB的销售历史数据,面对这些海量数据,传统的预测系统越来越不适应新的预测要求,主要表现在:大量的历史数据处于脱机状态,变成了“数据坟墓”。预测涉及海量数据的处理,传统的方法无法满足运行效率、计算性能、准确率及存储空间的要求。预测所需的数据含有大量不完整(缺少属性值或仅包含聚集数据)、含噪声(错误或存在偏离期望的孤立点值)、不一致的内容(来源于多个数据源或编码存在差异),导致预测陷人混乱。传统的数据库技术在预测知识的表达、综合和推理方面能力比较薄弱,难以满足日益提高的预al要求。在这种情况下,一个新的研究领域—数据挖掘(Data Mining,DM)的出现引起了学术界和产业界的广泛关注。
进行销售预测数据挖掘前的数据准备问题
数据挖掘一般包括数据准备、数据挖掘和结果的解释与评价三个阶段。数据挖掘结果的质量与被挖掘数据质量息息相关。数据准备就是对被挖掘数据进行定义、处理和表示,使它适应于特定的数据挖掘方法。数据准备是数据挖掘过程中的第一个重要步骤,在整个数据挖掘过程中起着举足轻重的作用。它包括以下几个步骤:
数据清洗一般来说,销售历史数据来源于异质操作数据库。这些异质操作数据库中的数据并不者提正确的,常常不可避免地存在着不完整、不一致、不精确和重复的数据,这些数据统称为“脏数据”。脏数据能使挖掘过程陷入混乱,导致不可靠的输出。数据清洗通过填写空缺的值,平滑噪声,识别、删除点,解决不一致来“清洗”数据。它可以在数据装人数据仓库之前进行,也可以在装人之后进行。
数据清洗技术一般可分为基于规则的方法、可视化方法和统计学法方法。基于规则的方法根据字段定义域的元知识、约束和与其它字段的关系对该字段的每一数据项进行评估;可视化方法以图形方式显示数据集的有效轮廓,从而很容易辨别脏数据;统计学法方法通过统计技术填补丢失的数据和更正错误的数据。
数据集成与数据变换在进行销售预测数据挖掘时常常需要将多个数据存储合并,并转换成适合挖掘的形式。在销售历史数据中,我们常常会发现代表同一概念的属性在不同的数据库含有不同的名字,这将会导致不一致和冗余,而含有大量不一致和冗余数据会降低数据挖掘过程的性能或使之陷人混乱。将数据集成与变换将减少或避免这种情况,提高数据挖掘的精度与速度。
数据集成要考虑实体识别问题、相关性分析问题、数值冲突检测与处理问题等。实体识别问题即如何将来自多个信息源的实体匹配相关分析问题即通过相关性分析来检测数据冗余数值冲突检测与处理问题即通过对元组级冗余检测,消除数据语义上的异种性。而数据变换涉及到平滑、聚集、数据概化、规范化、属性构造等,通过这些处理将数据转换成适合于挖掘的形式。
数据归约当选择用于数据分析的数据集过大,在海量数据上进行复杂的数据分析和挖掘将需要很长时间,使得这种数据挖掘不现实、不可行。而数据归约技术可以“压缩”数据集,得到其“归约”表示,它小的多,但仍接近于保持原数据的完整性,使得在归约后的数据集上进行挖掘更有效。其策略包含数据立方体聚集、维归约、数据压缩、数值压缩、离散化和概念分层等,这些涉及到了多特征方、压缩搜索空间的启发式算法、小波变换、主要成分分析PCA、线性回归模型分析和对数线性模型、多维索引树、离散化技术等。目前这个领域仍然是一个非常活跃的研究领域。
面向销售预测的数据挖掘工具
目前可用于销售预测的数据挖掘工具主要是一些统计分析方法,如时间序列分析、线性回归模型分析、非线性回归模型分析、灰色系统模型分析、马尔可夫分析法等,它是目前最成熟的数据挖掘技术。然而,一方面由于产品的需求往往是由许多因素综合决定的,传统的统计分析方法往往只是考虑了其中的一部分,而且影响需求的各种因素之间往往存在着各种错综复杂的相互作用,依传统方法建立的简单模型无法表达这种相互作用;另一方面,由于庞大的销售数据集的性质往往非常复杂,且非线性、持续性及噪音普遍存在,因此需要一种不同于传统的新的理论和方法去解决数据挖掘中的问题。而神经网络作为一种非线性自适应动力学系统,具有通过自学习提取信息的内部特征的优点,非常适合解决销售数据中的数据挖掘问题。自从1987年Lapedes和Farber首先应用神经网络进行预测以来,神经网络已成为一种非常有前途的预测方法,近年来已成为经济预测、管理决策、数据挖掘领域研究的热点。
神经网络可很好地胜任数据挖掘技术,它通过模拟人脑反复学习技术来工作的。对给出的样本数据,神经网络通过类似人类记忆过程的方式学习数据中的统计规律,归纳出能描述样本特征的数据模型,然后用已学会的数据模型分类新给出的数据。用神经网络挖掘知识时,分析者首先找出一组变量,这些变量中需要有导致实例结果的因素。神经网络通过反复学习,找出变量与结果的函数关系,再用这一函数对新数据分类、预测、评价等处理。目前已有一些神经网络模型已很好地运用于销售预测,分析、预测销售的未来波动等,表现出良好的运用前景。
面向销售预测的数据挖掘过程
在利用数据挖掘技术进行销售预测时,现有的数据挖掘工具能自动完成许多工作,但挖掘过程中每一步应特别小心,否则会推导出错误的结论。数据挖掘并不一定遵循特定的过程,但一般的步骤包含以下几个方面:
在进行数据挖掘工作前,要清楚地知道数据挖掘的目标。事先明确挖掘的业务目标,确定达到目标的评价方法,这将大大减少挖掘工作的难度和工作量。
选择数据。这些数据可能是数据仓库或数据集市,也可能是各个联机事务处理系统中的数据。
数据预处理。这个过程可以改进销售数据质量,从而有助于提高其后的挖掘过程的精度和性能。高质量的销售决策必然依赖于高质量的数据,检测数据异常、尽快调整数据,并归约待分析的数据,将在决策过程得到高回报。
在开始挖掘工作前,需要具体每一个细节,确定哪些想法需要验证,哪些方面需要用工具从数据中得出假设。
构造数据挖掘模型。通常,先用随机数作种子把数据分为两部分:训练集和测试集,用于构造和评估模型。用数据挖掘工具去测试数据质量,比较各种工具输出的结果,从而精确地构造出模型。
验证结论。确定结论是否正确和符合业务要求,如果挖掘的结果有错误就要寻找错误的原因,并对数据重新挖掘,重新构造模型。
信息处理技术的飞速发展,加上人们孜孜不倦地对销售预测效果的追求,使得数据挖掘技术在销售预测中应用成为一个非常自然的选择。数据挖掘作为一种新的技术,它可以对销售数据进行深层次的分析,采掘到隐含在数据中的有用信息,发现和把握新的市场机会,为企业的管理决策提供科学的依据。数据挖掘技术对销售预测技术带来的挑战,无疑将推动销售预测的发展。
销售预测技术
有很多预测技术可以供销售预测管理者使用。实际上,很多时候是可供使用的技术过多,导致选择时几乎信息过剩(至少,仅时间序列的技术就不下60种)。这种情况常常让决策者失去任何全面理解技术的希望,从而使得他们依然采用自己熟悉的一两种方法,而不去管这种方法是否合适。
幸运的是这种情况可以大大地简化。要理解销售预测的技术选择过程销售预测管理者也只需要懂得较少一批技术的特点,并且他只需要了解在什么条件下,何种技术表现最好。一旦一组技术被选定以后,再决定选用哪些具体技术就比较简单了,这时的选择就可以参考很多的研究成果,这些研究指出了常用的方法以及适用的情况。
常见的预测技术分类是根据该技术是主观的还是统计分析的来划分,无论分析是内生数据(指使用历史的销售数据,而不考虑其他可能的影响因素),或者是外生数据(指利用其他数据,比如价格、促销手段改变、竞争行为或者经济条件解释销售变化)。预测技术的这些特点引出了销售预测技术的3大类型:时间序列,包括固定模型和开放模型;回归(相关技术或者概率技术);定性分析技术。
开放时间序列模型
开放时间序列模型技术(Open-model time-series,OMTS,也称Jenkins技术)首先分析销售历史数据的特征,之后建立模型;因为只是考虑了销售历史记录,OMTS模型是内生的。OMTS模型是建立在:水平(Level趋势(Trend)、季节性(Season)和噪音(noise)4种数据形态基础上的水平是销售历史的“地平线”,或者是在没有趋势、季节性和噪音的情况下销售量的状态。趋势是销售量连续上升或下降的形态,可以是直线的或者曲线的。季节性则是不断重复的销售量增减变化形态,比如说空调在每个夏天的销售量较高,化肥在春天的销售量较高,玩具在秋天的销售量高其特点就是高销售量和低销售量均在每年的特定时间中周期性地出现。噪音是出现的随机波动,是销售历史中时间序列无法解释的部分。这并不是说这种波动不能运用回归方法或者定性判断技术来解释,而是说它产生的形态不是连续一致的,从而时间序列技术不能对它做出预测。
OMTS技术就是通过分析数据,发现它的形态特点从而建立合理的预测方程。OMTS技术和固定模型时间序列技术(Fixed-model time-.series,FMTS)相比较,后者是通过事先假定数据中存在或者不存在什么形态,而选择固定的方程。虽然很多学术研究都是关于OMTS技术的研究,但在实际的经营活动中却很少被采用,这主要是因为其复杂性,并且同FMTS和主观判断技术相比,其精确度并不会提高很多。许多OMTS预测技术都需要严格的培训和大量的分析时间。整个分析过程中很多主观的判断都要进入到模型当中,因此预测的准确性就很大程度上依赖于使用者的能力。用OMTS预测得到可用的结果需要很长时间的销售历史数据(常要求多于48个数据周期)。因为以上因素,OMTS技术常在历史数据比较丰富而缺少其他数据的情况下使用,并巳还要求预报人员有良好的专业训练,预测的项目尽可能地少。
固定模型时间序列技术
对于短期的(预测时间范围小于6个月)的生产预测,变化快且需要预测的项目多,从而需要简单且实用性好的技术。固定时间序列技术(FMTS)预测模型能有效地满足这些要求。FMTS技术同样利用数据的4种形态(水平、趋势、季节性和噪音),就像OMTS技术一样。然而FMTS技术首先假定历史销售数据当中至少存在上面提到的一种形态,并将此形态用于预测,得到预测结果。指数平滑是FMTS中常用的技术。
FMTS技术通常比较简单,不需要太多的费用,并且要求数据量小。其中很多技术可以随着销售环境的变化而快速调整,从而非常适合做短期预报。与相关分析比较,FMTS方法可能会不够精确,比如预报人员实际使用一项FMTS技术,而他假定数据中不存在的一种形态实际上存在于数据当中时,预测就会出现问题。例如,简单的指数平滑假定销售历史数据中只存在水平和噪音。如果趋势和季节也同时存在于该数据中时,那么简单指数平滑所做的预测将会持续出错。前面提到,存在60多种不同的FMTS技术,然而我们只需要讨论其中的不到10项技术就能使管理者抓住技术原理的精华,就能懂得在一定条件下使用什么样的技术。
相关(回归)分析
相关分析(Correlation analysis)是一项使用统计原理实现预测的技术,它试图建立销售和各种可能影响销售的外生变量(例如广告、产品质量、价格、物流服务质量或者经济情况等)之间的关系。通过分析过去的外生变量和销售数据以判断它们之间的关系强弱。例如价格上涨,销售量下降,表明两者之间有强烈的负相关。如果一个强的相关性被发现了,那么就能用这个外生变量预测今后的销售量。合作、竟争因素以及经济情况等变量都能在相关分析预测中用到,从而使销售预测可以考虑到较广泛环境下的情形。相关分析还可以提供每个变量影响的统计估计值,因此,可以删除对模型预测贡献很少的变量。
相关分析是可使用的最有潜力提供精确预报的技术,但是它需要大量的数据。数据量的大量需求就降低了相关分析对条件改变的敏感程度。了解相关分析的优缺点有助于弄清楚它什么时候更有用。比如在较长期(6个月以上的预测时间范围),公司整体层次上,又有大量外生变量数据可以利用的情况下,相关分析可以用来预测。
定性技术
定性技术(Subjective techniques)是一个过程,它把有丰富经验的人员(营销计划人员、销售人员、公司主管和外部专家)的意见变成正式的预测参数。
定性技术的一大优点在于充分考虑宝贵的个人经验,并且不需要太多数据。当只有很少或根本没有历史数据(例如新产品)时,该方法相当实用。
然而定性预测方法需要花费相当多的“关键人”(Key Person)的时间。由于这个缺点,定性预测常作为公司层次长期预测的一部分,或者用于对短期预报进行调节。例如我们曾经有过合作的一家汽车配件生产企业,它的预测委员会每季度都要召开一次会议,做出3年的预测,同时每个月进行一次定性预测调整生产线的产量。例如,一条特定的生产线的产量能提高3%。而具体个别产量预测就交给预测主管,采用合适的FMTS技术方法进行预测如果这些工作也留给预测委员会,那么将浪费许多宝贵的执行时间。
附件列表
免责声明:
- • 会计网百科的词条系由网友创建、编辑和维护,如您发现会计网百科词条内容不准确或不完善,欢迎您联系网站管理员开通编辑权限,前往词条编辑页共同参与该词条内容的编辑和修正;如您发现词条内容涉嫌侵权,请通过 tougao@kuaiji.com 与我们联系,我们将按照相关法律规定及时处理。
- • 未经许可,禁止商业网站等复制、抓取会计网百科内容;合理使用者,请注明来源于baike.kuaiji.com。