Gamma值
Gamma值是期权价格对于标的价格的二阶导,也是Delta关于标的价格的导数。Gamma主要用于衡量标的资产价格变动对Delta值的影响,换句话说,当标的资产价格变动一个单位,Delta值会相应地发生多少变化。同时,Gamma也能间接衡量标的资产价格变动对期权价格的二阶影响。对于期权持有方来说,Gamma值为正,而对于期权义务方来说,Gamma值为负。
Gamma值的含义
期权的希腊字母之Gamma,就是指:随着标的物价格的变化,造成的Delta值的变化。
Delta值,是随标的物价格的变化,从而产生权利金的变化。但是,Delta值也是随着标的物的价格变化而变化的。
即,Gamma值为权利金的变化赋予了“加速度”这一变化曲线。
买入看涨期权,则代表:Delta会随标的物的上涨,呈现正向变化,Delta变大,也会影响权利金变化幅度的加大。即,随着标的物上涨,Gamma值上涨,Delta值上涨,未来期权价格的上涨速度会越来越快,越来越迅速。
比如:某看涨期权的Delta为0.5,Gamma值为0.06,则代表:标的物价格上升一个点,权利金会增加0.5,且Dleta值会增加为0.56,一旦后续标的物价格再次上涨一个点,权利金上涨的价格会变为0.56。
买入看跌期权,则代表:Delta会随标的物的下跌,呈现正向变化,Delta变大,也会影响权利金变化幅度的加大。即,随着标的物下跌,Gamma值上涨,Delta值上涨,未来期权价格的上涨速度会越来越快,越来越迅速。
比如:某看跌期权的Delta为0.5,Gamma值为0.06,则代表:标的物价格下降一个点,权利金会增加0.5,且Dleta值会增加为0.56,一旦后续标的物价格再次下跌一个点,权利金上涨的价格会变为0.56。
正是因为Gamma值的存在,才导致期权被称为非线性市场。
Gamma计算公式
Gamma的计算公式如下:
1.新的Delta值=原Delta值+Gamma×标的资产价格变化
2.新的期权价格=原期权价格+Delta×标的资产价格变化+1/2×Gamma×(标的资产价格变化)²
例如,假设某股票的认购期权的原Delta值为0.6,Gamma值为0.1,当这只股票的价格上涨2元时,新的Delta值=0.6+0.1×2=0.8,新的期权价格=原期权价格+0.6×2+1/2×0.1×(2)²。这个公式同时考虑了标的资产价格变化对期权价格的一阶和二阶影响,从而更准确地反映了期权价格的变动情况。
Gamma值特性
正值特性:无论是对认购期权还是认沽期权,Gamma始终是正值。这意味着,不论市场走势如何,期权的Delta变化都是朝着让期权价值增加的方向发展。
对平值期权的影响最大:当期权处于平值状态时(即期权的执行价格非常接近于标的资产的当前价格),Gamma达到最大值。这是因为在平值状态下,期权价值对标的资产价格的微小变动最为敏感。
到期时间的影响:随着期权接近到期,Gamma值会发生显著变化,尤其是对于平值期权,其Gamma可能会急剧增加,导致Delta也发生剧烈波动。
Gamma如何管理
了解Gamma并有效管理它,可以极大地增强期权交易策略的灵活性和盈利能力。
动态对冲:对于期权交易者,特别是市场做市者或专业的对冲基金,管理Gamma是维持投资组合Delta中性的关键。动态对冲意味着根据Gamma指示的Delta变化率不断调整持仓,以保持对市场波动的敏感度在可控范围内。
风险控制:高Gamma值意味着高风险和高回报的可能性。投资者可以通过调整其期权组合中的Gamma值来控制对标的资产价格变动的敏感度,从而管理整体的市场风险。
利用市场波动性:投资者可以通过构建具有高Gamma值的期权策略来利用预期的市场波动性。这类策略在标的资产价格发生显著波动时表现最佳,因为高Gamma值将导致Delta快速调整,从而放大期权价值的变动。
附件列表
免责声明:
- • 会计网百科的词条系由网友创建、编辑和维护,如您发现会计网百科词条内容不准确或不完善,欢迎您联系网站管理员开通编辑权限,前往词条编辑页共同参与该词条内容的编辑和修正;如您发现词条内容涉嫌侵权,请通过 tougao@kuaiji.com 与我们联系,我们将按照相关法律规定及时处理。
- • 未经许可,禁止商业网站等复制、抓取会计网百科内容;合理使用者,请注明来源于baike.kuaiji.com。