登录 | 注册
高级搜索
会计百科  >  经济  >  长期菲利普斯曲线

长期菲利普斯曲线

经济术语

  长期菲利普斯曲线是一条位于“自然失业率”水平的垂直线,表明失业率与通货膨胀率之间不存在交替关系。一旦形成了通货膨胀预期,短期菲利普斯曲线就会上移,工人会要求足以补偿物价上涨的更高的名义工资,而雇主则不愿在这个工资水平上提供就业,最终,失业率又恢复到“自然失业率”水平。

目录

长期菲利普斯曲线的政策含义

  垂直的长期菲利普斯曲线表明,失业率与通货膨胀率之间不存在替换关系。而且,在长期中,经济社会能够实现充分就业,经济社会的失业率将处在自然失业率的水平.因而从长期来看,政府运用扩张性政策不但不能降低失业率,还会使通货膨胀率不断上升,即经济政策在长期中无效。

菲利普斯曲线概述

  1、菲利普斯曲线是一条描述通货膨胀与失业或经济增长之间相互关系的曲线。

  2、菲利普斯曲线最初是反映失业率与货币工资率之间变化关系的,失业率越低,工资增长率高,负相关。

  3、20世纪60年代,美国经济学家萨缪尔森和索洛把菲利普斯曲线改进成为一种表示通货膨胀率和失业率之间的相互关系的图形,一般称为简单的菲利普斯曲线。通货膨胀率和失业率之间存在替代关系或负相关关系,当失业率降低时,通货膨胀率就会趋于上升,当失业率上升时,通货膨胀率就会趋于下降。政府进行决策时可以用高通货膨胀率来换取低失业率,或者用高失业率换取低通货膨胀率。如图a所示。

  4、美国经济学家弗里德曼认为,工人和企业感兴趣的是实际工资而不是名义工资(货币工资),在劳资双方工资谈判时,工人会把通货膨胀预期考虑进去的。这就意味着,对某一个水平的失业率,可以对应多个水平的通货膨胀率。由于预期的存在和变动,通货膨胀和失业替代关系只是在短期内才是可能的,而在长期内则是不存在的。从长期看,菲利普斯曲线是一条和横轴垂直的直线。

CMAzD2/FEREQkF2gELR+yWq08++yzTJ8+nR9++IG2bduycuVKb8cSERGRXKKClk8ZhkHr1q3ZsmUL5cuXp0WLFrz88svEx8fr2DQREZF8TgUtn/P392fUqFFMmzaNOXPm0KpVK6ZNm+btWCIiIvIPqKD9CwQGBtKxY0eWLl1KjRo16Nu3Lz179mTjxo14PB5vxxMREZGrpIL2L1KwYEHGjRvH/PnzSUhIoHXr1jz88MO6uK2IiEg+o4L2L2MYBg0aNGD+/PkMHz6cjRs3UrduXYYMGcKBAwe8HU9ERESuwD+7zEZ6HPOnfMW8FVs5k5aOI6IC7bv2pH3jyjhU/bzKYrHQvXt3WrVqxcKFC+nXrx9Dhw7lnnvu4YUXXiA0NNTbEUVEROQS/l6NMp3s/eUr7up+Hyvd1Xnlo/8xYcIE3nqkJZsnPEvPpz9hR1waOpfQ+woUKMAdd9zBrl276NevH/MXLKB69eoMGDCALVu26Bg1kWvJlc7Bbb/x0w8LmDtnNvMXLWfnoVO49GcoIn/yNwqaSdz6qXS8/WkKdnyeN+5rRdFgP7DYKF6lKS8N/BD7wsHc++gQkjO11vEVISEh9OvXj58WLeKTTz7h66+/5sYbb6Rz584cPXrU2/HEh5w6dcrbEf6V3M54Pn32Th765Cf8Slagbu2ahGfsZMA9bXhnyjq0thSRC111QfM4Uxj+/gcctVeiZ7vrsP3p4vV+EeV5/tHrWT//cz5fdSy3ckouMAyD8PBwOnXqxKZNmxgxYgSGYVC+fHk6d+7M5MmTOXnypLdjipcNGzaMWrVqMWrUKP0+5JK0E5t4pkNjZqY14dv/vUCTauUoVrI013d4kM9GD2Lpa3dx37szSHWqpon4uvT09GtyvdGrLmhZp1ezaPkWgqq0p2xR/+wzGDaq39yGculHGTp2Eem5kVJyXUBAAD179mTKlCns3r2boKAgevfuTbVq1Rg0aBDJycnejihetHnzZvr27UvNmjWZOnWqt+Pke3NHvM1ny07y8CP3UuBPR/6Gl2vK8z1L8dWQl5mzW6OXIr7ugQceYNKkSXl+iNBVF7T0A2uJifPgXyGasD8PnwFg4Fe6DCWD4PivaziUlQspJc/Y7XaioqKYMGEC27dv54UXXmDOnDlUqFCB3r17880333D69GlvxxQv8Hg8nDhxgu7du1O3bl2GDRum3Z9/h3M/38z8AUfJO6hduUC2yYbFQbMOt1Lk9D4+/GIZTi9EFJErd+LECXr37k39+vX5+OOP82xPw1UXNGdSEpkmWBwOrJe6N7c1iIBAMJOSydCIfb7w+67O5557juXLl7Pwxx85fPgwd955J5GRkbz66qukpqZ6O6Z4yYYNG3jqqaeoUqUKM2bM8HacfMUdu5gd21Ow16lLkYCcVrkGwVUqU8XuZv2ipRxSQxPJFzZs2MAzzzxD5cqVmTp1aq6PqF31ZTYCosoQ7oD0uJOkucHPmsNMzmRSksFetyxF/uaFPAzDoE2bNjRu3BirNacXkWshMDCQtLQ03n33Xd59910CAgIICAjwdizJQ39VxE+dOkWXLl3o3LkzY8eOJSws7Bomy5+yjh0jyQRrSAh+l9oktoUSGg6euJOcdgH2a5lQRP6JhISE83saevTowQMPPECBAtlHy6/WVdcnv+I3US7anzXr13Myw0OBoD+vcUzS9+7mYIaV5u1bUfhvFjSLxcK3335LerqOYvMVJ0+e5L333mPatGmkp6dTp04dBgwYQO3atfH391eR/pd47bXX+PTTT3OcFhISwmOPPcYbb7yBv38Ox6BKNrawcAIMyEhNJcsD/jmVNNONywmWwqEEX+GfkZ+fH3FxcdSuXRuLRRee9IZjx44xc+ZMqlSp4u0ocg3t3Lkzx8fXr1/P+vXrGTx4MGPGjKFDhw7/6G/zquuTPbAsvTq3YdHweazecoyKjUpePIMnnUXfTiOh1HW82qs2/+Qr2+Fw4HA4/sESJDeFhYUxduxYhgwZwpo1a1iyZAmPPPIIFouF+vXrc8stt3DbbbcRERHh7ajyD4SHh2d7rFixYjz99NN069aNMmXKYBiXOr5B/sxe+iaiS9lYuWEzcZkmoQHZ3zvniSMcPgOVujam9BWOnj311FMUKVKElJSUXE4sIn/lo48+Yt++fTlO8/Pzo3fv3kRFRf3zMz3Nv8F5cqP5QL2i5g33fmAmpGWZnt8neJzm0c1zzLrRpc0nx/xqZnn+ainyb+DxeMz58+ebjRo1MiMjI02r1Wr27t3bXLtunRkfH2+63W5vR5Sr9Nprr5mACZiFChUy+/fvb6alpXk7Vr42+J4bTHtAaXPW1jPZJ3pc5s4Jj5q2gJLmx8sOXftwInJVWrRocX4d+fu/kJAQs1u3buaxY8dy7XX+1g5IW2Qths7+kdGffMqjjzzNTW1aUqagjf3rfubXfWk89tn39Li5FnZtZP/rGYZB27ZtadOmDfv27WPt2rUsWLCAG5s1Izo6mpo1a9K5c2fatWtHYGCgt+PKFQoPD+e5556jW7dulC9fXrvQ/qG7n36GafPvZNy3c2n/Vs+Lzs7KTDrE4FFzadjjae6qX9xrGUXk7+nbty+9e/emXr162O25dwCpYZr/bAwuKzmWDb9t5ESyh+KValOvYjHdgV1wuVxMnjyZ4cOHc/jwYeLj4+nTpw+9e/cmOjqayMhIHbPmo7Zu3Up0dLQKdS5L3D6Tex4cTJX7XufBtjUJdRikxx9g8rCBrArowGcDH6Kon7dTisjl3HzzzWzYsIGWLVsydOhQihfPmw2rf1zQRP6Kx+Nh3759bN68mRkzZjBjxgyio6OpXr06d951F+3attVxhvLfYJokxR7gt7XrOBiXhNMDNv9gylauSf1aFQlx/M0zqkTkmho/fjzVqlWjVq1auTpi9mcqaHJNpaamMnnyZCZOnMi+fftJT0/jwQcf5LbbbqNSpUq5cmqyiIhIfqeCJl7hdDo5fPgw69atY9y4cSxbtowKFSrQqVMnHn/8cZ0JKiIi/2kqaOIT9u3bx5gxY1i4cCHbtm3j4Ycf5p133iEkJMTb0URERK45FTTxGaZpkpiYyPbt2/n888/59NNPc7wml4iIyL+dCpqIiIiIj9EVMURERER8jAqaiIiIiI9RQRMRERHxMSpoIiIiIj5GBU1ERETEx6igiYiIiPgY3fxNfJLb5cTpcvH7RWAMw8Bq98NuNQATj8tF1vnpBla7HYdNN1+/LNNNVqYT9wVX17HY7PjZz64KTNODMysLt+fsdMNixeGwYzEMr8QVEfmv0gia+KS0M3Fs/2US3Zo3pOF17ZmwaCNxye6Lpm9Y/DVd27Tira+WcuhUmhfT5iOeVA5tW0n/Lk1p2PBGnhzxA/tPJJyfbJqZxOxazQcPtqLn88PZevAoWS4v5hUR+Y/SCJr4pJCIEtRt2YOQl/qx9cQNNGvViBJ+v081CI4oQf3rbsJq/kzrHm2oEOzNtPmINZQK9ZrQstIZhv7sz0s9WlOlZOD5yRZLANE1m9K+TnHSom6mfqWyXgwr4mWuWOZNmsma7TuITc4iILwYNeo3pGv7VoT4W4AkFk/5hqXrtpLgDKR81Rp06HQH5SLt3k4uuejkgVV8992P7Nh3jAyPleLlqnLdLb1oXTUUgGM7VzBnwVK27zuGIyKKRq260rlxuX/8uhpBEx9mxc8/AKNAKI4cflMtVjv+YcEEas/mVbIQGlYQw8+PYHtOuy4tBIYEE+yn7Tf5j7MVoV3ve7kudD8jR0/BU6Mtvbu0OVfOAEJp0fU+uhTbz5bTJej7YC+Vs3+hQmUbcf8jvUhYNY6Rkw5wU+/7aXWunAEUr9yYPg/cw8F1u6nQoy+350I5A42giY8zDAMMg0sdAWWc+ydXxzj3xv3le6c3VgTDYqdEqRIYjkCiShYk2/agxUHZ6NIUiS+BwxsB5ZqwBhalaJECGGeiKRzul231aHUUILJEOcpHhebayJdG0ERERP7C7yfJ/NUXplUbNP96huUyAwZG7pYqjaDJv4bHlcmJY8fINO0UK1kcf6u2P0REJH/SN5j8a4HyJm0AACAASURBVGxYMJEfdyaSHvMbb0/ZgE4+FBGR/EoFTXyYBZvVipnlxG1mn2qaJk6bA7sBntRtTJ2ykhsb1qBK/Ya4Rg9gwf4McniaAA6HH7g9OC/xBrldbqy6rpyIiNeooIkPsxESHArHYkjJ8mSb6nSmkREeTBE7pG+Yy/L4yoQG2zAcETSuuYO5K/Z4IXN+YKFIkeIYqSnEJjlzmO7iePwpCocF5jBN5L/HYpzdWMm+FjrHY+KxZt+gcbtzmFfyKQOrYQGPeYkNfxOPYcGSi61KBU18mI16NSpD5nJ27T2TbeqpAxsoHl2ZQlYPp44ewSxUEJvFAMNCcHAop+JOYWoILQcWijVuR7Wg4/z006Fsu4JdZ/bz85oUqkUV8ko6EV8THBKK4XSSnJqVw1STxIQEAsJDzv3Xxf6loxk28kumjP+Ih594m/Wxmdc0r+QFK0FBwZgJCaS7sn+xmKabjAA/InJxx4MKmvi0To88R7sisQz9cCTJ5x/1cGr7PF5+5WvuvrMDdgz8/AP4o42ZZKQnYffXSe+X4qjYixcfbc6cF+9j7raT5x/3OBMY9vzLJHcbRr2oIC8mFPEVBoXLVSLKfYbdu05ln+zJYM3q36hUMRoA18l1PH7HGGrfchc97nuCmxwr6NF/GimXHH6T/MFGubLRWM6s5cjR7HseXFmxWAsWpEwuXgZPZ3GKTwss3ZTp69czetQkXnr5HSqWKIjFlUpiViCPj5pEw+hwACJqNKD0FxvIyDIJtaeyd7ed+h3LoVtIXoJh5Y5XxhBReRxzR77H7nLlCLS5SU6IJ6rb6zzRqha63KYIgIF/lfY8d29V3vt6NCs61+T6UmHnRjec7Fgyla9P38OgJqUASDq4m6VpoQzwt2IYFqrUiub0u+s57b6LYA2J5GMGTbr2psqoXkyeMocWL91O0LkrBaQnHOS7T96lQbOnCMzF7xwVNPF5AcXr8OSAOn85jz36Ntpct4TD8SmEWw8xJ+wxJjQpqmut/gVbcGHa3vMCbe/xdhIRH2eN4JFh87C+eg+31a3DHY88RMWCJpsWTeV4VC+++ao/4faz+7aCCkRSxLWeYydSoXAIYBDUsAbhOucm3ytR7w5WLLPTs8eT1F06i/va1sGSdIBZi3bQ5fWRPNE6d2+NZ5imjtKRf4czR7exaM0erIaVco1upkZRHeQuIrnJw5m4GA4fO0WWaaNAkShKFS9w8UiHO4l57z/It0k30O/upqyYOZtS3Z+jQ8UgbTD+S7gyU4g5dIiE5Ays/iFElSlDwaDcP6RGBU1ERCQ3mSanDm9ny+FM6jWoTai/9m3K1VNBExEREfExqvUiIiIiPkYFTURERMTHqKCJiIiI+BgVNBEREREfo4ImIiIi4mNU0ERERER8jE8XNNM0ubqrgLhxua7RDc9MF+4cXurqM5tkpSSR5c4+xZWWSHpOE/7M48Hlyek1TTxX+XZ4PH+6dbZp8nff0cy0FNJyiG9mJXMyPgX3pd4mVzKnz6Rlu9G5KzmelMw/39r7cty4c/qgroIrOZ6kdCcmgJlFfGwCzitapJnj72NGahJnMq7gcxURkf8sny5oGcd38O7/vmHVho1s3Hj5f78tmsCDDw/iYGJmnmdLXjWM9z7/MdvjrrTDfPjpl8ReRQTn4Xl8MmoWF99+1c3qkX2577XxnLlMGXCdWM+D9w/gl33xF0/IOsDHj7/Ar/sSrjjLxtmf8fj7X3HodNa5Za/mqfv68/OO2CtehifjDOvmj6NXxxb0eP+nbDcJdp1YTp8Wbflq9eGcF2Bk8eWglxi3/CB/1JhMFg3szF0vjSbtMq+/d/UU/jd5GQmZgOsw7z37BEsOZVwirIf0zOw3vr3QmSUf0P6e/hxLd4ErjlG9GvLSqEWXSQE44xj1zLNMX3fkojK6d/Fn1G9yN8t2niQp6/KLERGR/x6fLmgWVyrTB49g2Z5jHD9+nOPHDvL9gN78b9bqs///87/9u/j5p0XEJOftt547/ThDXx/MT6vWcig+kcRTx1j27dfsT0hix9Q3mPXjBnYdiiMxMZHE+Fh+njOPnacyyHnAyCCoalf8toyh7dPfkuA0AZOsuDX87+tt1KhblaDLfEpnju9j9sKZ7D6ResGjJil7N/DZl1/w3bKdl/hBMkk6nXg25+//ju9mwqoE3FmpJCYmciY1kW1TRnAwLoXExEROxWzh2wkziM/4fSTLQ/zRfezYtoFFc6by2UcDaH7D9Qz4ehU12vaiW/l0UlJduLMyz5cUw27iSUqlcvEiOeeyRtCpXXVea9eE8b8eBSBxx0+MXFWap/p2IxCTlJMxHD2Tc7FKObqJcT/tO/vbbVjZcWg/lUr4A5B+Yh8nzyRz6vgh1v8yn49ffZjbHnyLPUmXHpmzm+kEF6xCpJ8VDAN30kEqVqt4yfnP54jZw6QffmTH4UQuHOA03OkcMCpTMiyeoX270qffh+xNukYjv5LPmezeuYPY+Hjir+DfqdgD/DDvF06mOC+x/snldJmprFmxir1HE3McIU84fpiEjEv/rpupMSxbvIHEdCdgkrh3Hcu37CfD5cF0u8n804i0M+UMmZcYjPac2sePv2zjTMaf/rZdcWxau5XkK9k7AWBmsXvNL2zYHUPWudf3JO5j1ZqtJKZf+Ui4x5nO0b2bGDPkQ+bvOMWfd3o4D8xj6IhpxF5imWmx65gyczFHEi78LnGxZNJQ5q0/zF8mMT0c37eTPTEJuDyQfuYgK39dR/yl8ns8OHPcK/OHfbM/4avFW8gygax9jPtwGJuOnPnL55yNfIpf5i4lLvnCUQwX66YPY9T3q0lKyeBa7QjzdT59s3SLxYLFUoA6zVrTqqgN5/HVDFnp5ME3OtOuTiHAQ8yS0cSU6kqjchFkbDpFWMBRCoXk7T0Yd/w4gel+t3Jb4aM81P9T2lcPI+VUPFGZJ/j8tW00ebQzUwY8w68NGxFk9ZCUeIbCzkjK3NoQ/xxvmGuj5z1deeOWmcS+3Y2CNg9LvllAvUFzeaJ51GU/pIP7DtP9g2/ofUOpPx40PWxctoCMG/vxZI/rcn6imcLc0YPZZxYmLNCBAcSs34MnycLcKV+dvW9c5iFOul1sWjaXlC0WTFc6CafdRByMp2XlIoBBUHghigYWoGiJaK5rWpvFy9fwwchhlL3g3mRHv3mez9M70r9PC+w2G3YLF92X7vSJnaxYvYOs3/8wXVYaF09j88olfHciiPW/LqfNfe05vW05MzalMWPEIDYF38qcSW9QOtx+0Y9lsdkpVDqaUDvg9sPhb8e282u+OlSZ649+yMNLi9On681UrBBN18fe5E67HyEBl27BFrsdm9WGgQFYsTss2C2Xv/PxtuVzKNrtbZ67vTqGxw3nnmO3+wFZOCIr8/Inn/Jqj+5M+O1R3mque4fK5Q1/8WnM5l2pFXz2Lyhh+wp2h9SmUVRQtnnN5EO8/+5XPD/jZx5qVirP7wVpOs8w4bWHSO08ks8evQHrhS+YtpP+PdqwqtSLzBn9KCX9c1iAcz8f3nEXHaYv56FmpUne9A33Dkpg4Y8jKZ21nz7PfMmNbWoTbAHIYuPE98jo+BnDHr35z0k4s2Med945llHzFtCpxh8bg5l753JX24HcNflHXm5V+kp+KH77+g1G+/fl+7e74ADciat47YGxvLdgDg0CAoB0TsSlUrRw5EVP9bhT2L5mBb8s+5nvps1if1YIlSqUp2HAUhpHdyLU74L1jhnLDzNW0LtPpxxjBERWw77pbloMHMu0maOoVSwQ55GFfDL8Rx4ed+dlPls3y8e8yijjHqa/1ZGsuG0888E8pk2ul31WVyKzhr/Nl6ltmPhym3PvdXYp+1bws70GPZoDZLFm3hjKdO71lykA0vcup0/3+3nsu1U81fr3DV2DpF3fM3KXgzZlY3l+0GxuuP9Z7mpR2bdLSh7z7Z/d4KJv8dWL5nOyXDkOrZnL+M0GWfE7GfbWCFoOqkijcs2vQSCTtGMrmbURvp/0McUd8bzZ4nrSb/2R/o8WZ+LHw3ly7gK61ozg6PKhvPZjAUa/dRf2Sy0uZSFPPraQVne0xGGEMWRIFzZN+ZzFjiKcdhainmsHi3/cyJIxgyh8zyie6VDtoqcf+G0O8/fZcO1Nofl18axd8QMLRn5J1Sc+oFudUGYv2E3H27tyeOMajgDu+K2MnbaTJwe+Se1iwWCLoOfz71+0zN+mJ/Pb3ht55PEbsAOe+JUsH72cO+99hAZROd0M1sA/KBT/378b3MkXr5R/f+eciWzaefT8x/nnWYKCI4mIDCH+jIXiJSIgPoWdJwrRskY1ootYWDh6BDTrxQ1RFk5uW07bZz7hhbJFCLL9sakVt3sFc37ZxbHNW4g56mLi+INYSGHfwaN8tyoJW0gcTquFIlVvomendpf6VCBzG6OG/kjFxg3xsxpk7DrB6dggVq36FbsnkaPJHpK2redXy2E8Z3YzfvJGHnn3LeqWCDm/CE/qPmb/fIx+b7TAeno799/6OI3fGcsDN0Zjs/tBWhIuwB5clMdeeY7hsz9ibbknaFAq7NK5RDAwXQFU73gvD5SzY7pSGfHg18TY29K9dzdCHQYZcXs4nFWE8iXDcB9ZxZjByyhXpni23SWmx03M7g2sXvozadFt6d2qei7Es2D3eChToRoX3n4yPWEPgx66iw0Fb2XE690pmlM5Awy7HX+LhSolzxYdh82Ony2SvWt/w1EukJifZpN2V2+albGBmcLBcbHEBgVnX5DpZuf2vTR7dDCtq14wUm9m8tvsmdhv7MYDTUrkmMGVGsPCBSvItAVgt1rAdLI9JoG0yGP8/MNcDMBM2kFqVip7fl1ErJ9B+qGf+e63QAZ9NoAoPwsedyYbVyzmwIkkbEHhRFerxNFfW7Nm5scUuOC19qz+kbSi9aheuiAWhx1/Pz/8LliBpiSeIDbhjz0jVVt1pMiYN1m5YSvByX788OU8WvR/jfL2ZPbvOMzsEUOxtX6eRzvUxGq5eC1rtXgoVqEGITZINBzYQkIx4nZxKKAku6cP4XjxhoSlxbF90yZO2wrSvHgCcWecBBfI+RvMZvcjtEDIufW9Db8APwoEXP6G4SsWLCCg+xDuvqk8Ho+J5VxOh18QVv9AClS/lSfu3Ef3Hj0I/WUNnSrm/k3I8wvfLmgXch7klz0O5n3QjFkna3NP59pM6d8ZT6dhvNbnxmsSwXXmCJ99c4S7+j1L4YMTeWOWledGfMTe0CK4Y3fQuOeTlC0RggEUa3AfTxRKIivxCNuTA6lVKiL7Ag0bh44eovYNTSjkf/ajmPpSV2ZHvcX0x2/BCuBJZOWok0QVC8/29JSjGxnxY2F+GfoCfoaBJ3ETr3y7hLKP20neNZXjxdozvHfT8x9ywuKFLFp3mGetl/7Ya3e4n2e+W8/pNA+R/h627Pbw9rIllIu8ZM28tMwTjO33DOWeG0kFh4PixYrhBzkOxduDI2l0QzNGvvYUmT3e5dZKKQRY/ChToTq1ytopHBpMoehq1KqUzMAXX2NB1AC+H/k04RcMZBWu2Jg+FRuzZfYRVm26ibvvuREbcSz5YSF3PvAIIUDMxG+57NiXJ40lsybT8K67qVgwgNTYQoTuKkXNWrVweOJYEmyhYPmq1KpVjIyNm5j/w1Ye/+CClYiZwfLP3ySr5XNcXyqU7TOnsyClGLdkHmDe7N/Y/+t6PEdjGPH+2wS5nGRlZGLYAti8eQ91S9W/fD75TzOMP7540xJ28NWWFKrdsIoBL60GXOz6cRqHinTjx++GEHnpxWACWac28OZjr1NnUM3cKWhnE17836xjfPTk/Wyr+SrzXupIQbst+2hPVhxfvdqPpckmm5MTGfFef2aEWMk6spITB9yM/eIYNRo2A+wUKVmBypX9wJ1IwSALqcEXjDybHnZu2EBIxYpsPlOZwf1uJshI5Kcpi6nV8XYKZB5mzMSDPDTyCyLPrXPdCeuYsugMPbufHYWzBhanxS0dMQ3L2ZxmOilLhrGhaC1atLwOK+A5lsSo4I00u+lmIoMsQEs63m9gs5/9ySxWP+o2a0fdc7GSj6/Ab/ymbCV543fDmVHsGb586kbshiXbdFfCYX5adoCihYKwAJ64XSQZRTCS49i+/hhjp2/g9hpt2LXjFKbHTdSNt2G1J5Ps8RB+bsR+3YxPGblkL3GrtrJn4/s8uymAzDNH2f9bDG+9eRRb+Y7UjttOTJkevNK2FR2798ZiZN/Kdma52L4vjlpVip99wGK54HO0YLkwfNJmvv85ifYdGmO7qCgm8816N18Mv4cCzq28fM8X3DtsIJUL+ePnH4iZmYVpQrV2jzDyXSvxZw7g9FTC7tMHY+Wd/FHQss6waNJM6vd4kOKV/XC9NZCZ1iV8daQ800f0puDVfnruTE6dPEWGx0Fk4Qj8bVf2fGtwCR7t153T+zezL6wjFVMfpfWku5n/8knGfLWWwCKHWGe7+Bf755XjmXa6NbO/eIrIP3/zGhZMZzK7d2wnznF24tH4FFL8DrBjm3lu5ZBCQhrYrNkzWmw2DKuDwKCgs8Unwx+rJYJiIWl8NmQRPZ4bQWjg7ysvkySLgX9QcUIC/ygTzsyMi48VcWew5qNb+O7kj3z+aBNWjn6d0cFPsHBgO4KtJskxa5m1MpM7etxMsAPiNs5j6orjFIwMw2Yx8CRvY8u2Eyz4bjoFPcnsDy+Ne8t2yhuWy+9eMRy0aFqZm3veT5Hx/XKYwSR23RwWWx/m84GPXFTO/jxfwv5VzJx+CoMMYlP++AENy8UrQdPtZM/eGKIqlOX8Xk7Djs1hwT8ggMDAQDwOG1abg8CAQByeAOxWA4efP4GBgRj+Dqy2MPz9bOdfe9v8z3h1oZ0H+h5j9crjfDVxPUNG/4+a9mPYwypSzn4Cy9gg7n/hNSr7nX2Wx52Gy+2nciZXzpPKqq/G0qVja6jVi6duq0zC5pnc/ssB3vz4NYqE2HCfvvTTLRYr5erVpnJA3kVM2LeKTz8dA81fZ3zvFgReal3tKMxdH3zFXemr6TljBY/2f4+m0UHEzXmVn0/a+GzCm4QlbWf5kBGXeUUPe+e8zYu76vPUzVH8NnsaaxN+4603F/BKueupf/on9pe/iZtiljBtGoDJ6eXDeGNlKZrcfjNRDjAMC/4BF5Y+K7U6PU2IpTh2ux92sjiYFMHd/V+iUFgAfrar3HHsTGT9r1sod11jrLZwajeoiD85b7iGl2vIfUULM37qBtp1u43IQ4kMDNhGkxZtqcxehr03g+qN29IhKpW37u2GcdtgXmpbG/sFkep3foIxnZx890YMM6JfYsi9ZUg8sJgtAxbx8Zj3CASmvDSLWLsDh/3SlcCVkcKTD97PQ0/ehx04tvEQewIWMcV2ADyn2Hs8kR9nf8eucD8yN0/klbn+VG9xHeWCz23cm5ls/+ZFyjW/m/ohsPmrCXyxZgPVtuzEWsKPmFNpJB/dw6pfVxBkukmynmbiO+/CWx9ye63Ceb573hfli4KWkZJF5dv7UqHA2W+zGyqa1L/9JSatOUTl0KsrZ8c3z+Hh3i9hrXU9xo45bLS2YuaCCdS8gj1LhtVKAPDLrKHct7gG81/vSeD3AQQXrsTD/Srl+JxN6b9yzHV99nIGYFiwWq3YLFas1rMzWK1WrA4/rFbruYJmx2YlxwN8LYaV7Bs6Jpt++pmi/UbRIvri/QhOlxPDYr9oS2fFpDcYtugERSPDsFsMMLPYEmPSvEwJMM4Ww+Td83m7/89/xLaHULlpXRqXjaBw7Q48Vvv3KR52fzGTPRSibaculA1ycMe5KcemTLiiP7Domo2pHLSZnNYTpjuTWSvTGDl9EOX8PRxau4ygak2IDPzz74BBwehG3N7l7Aja7OlT/phimKz/fhgPHJgJpofMtNP8MHsRHYYsYuRDDXEYAFasV7vSveC1AwIdFCxahNoNGpL27UMkN3qM7vVK4LCc3aVyJj4Cy+kEMlyAH0A6c97sxNeee5n4Ts9L7xIXucDJ1VP41ujN8FcrMuHZB9lUYwCTXx5Ar49n06XG2bGzyx7Cbthw+OVFOjdHfx3Li8O3M2DEcMqHX2KfZg6cafF89Ho/vgq2knV0DR46/hHXPMmX7z3J0lADcLFnYyqNLjrsycBmtxJaoTH39WmOHXAd8WfymKNcFx3E7HeW8c7Qz2hy/lACD4eTZzDpdENyPIIDwLBTpWFlPmjYhGUvL2DgrYUY1Ot+Dt8+nNtu/309kURysoOQEH8gk9VjXmX40lj8g4KwGeBMO8WRDft5vm9fPHFb+X7ZQTq/O5k2V7Dhag8sQci2vrRclMDPL+QcMmvnNFbGlGNsm2oXlbM/O7FzJfPmbiM1bgcpWRdsuBpX9j1qKxjF7d27EwRsj59HTFhLundvAFn7WP31OFp17EStYsGkhP/G6K3BlAj4Y0Ues/prOo8ry89zbsSddZohYzfTf9wELEfXcSq0AhERBQgIKUb96xsTYQWaNqNDnyuK9a+VLwqaf8FCVChgIy3hALO/HMNv6SVYsWQcY95/kIWlG9Ozyy00qFOV7IfI/oknkXefforgJxcwqU8FLK4EHm5Vl7vens+awe0IuMLvZKvdj5bd7qBGw5Isa5jGwJf7Ed34ZoIAZ9oBRn+zm/fGDqV2gcuMh5gmhiOEKjVrUfjcL/LOiCCCIktTs3aNc7s4E5jlD56crq1mySmwSaE6zelVGSZ+9D5hbR/htlpFsGKS5czCYnOc3+cPcNP9g7jp/gue7jrJ4E2jyTDBwMBms1Gz80t8/FD02SF2jweLJec/5owTm3jt42XY3UX4fuQQClVpTsfWjQi1AR53ztdTM10cXreQn3YlUzAsEKvp5J7H23Fi61aKVo9i+y/zyNxmJcU/GPfqHygdHsyORbPZcHInk8bPofKdr/LGA624+Bh/k/i9q5k3JxkLSRxP+uO987g91Lz1cca82pH4JUOp/twpNp2eQbEL/xIslpzf2kvyXNSgSzd9mKlNDWLXTmPQ9oa888H17Fu7lIPxaVhsNog9TIhrE4vnLOBkhB0LLtzVH+KeiBIkZkDhK/8uk/8o053Fbld1Pni8AQ4r3HLXbdzZ9VZCW7/Pmw1zPrbqrxeYydZFXzFx5lJSg0rT+Z4+tKha7G/ny0g6yd6g2gwb24eCORTA+L2/8P74PTz9Ym9KBF+8nrQHRvDUWx+fH0FrPviCiUZR7n91GHdUPbuLc2TX6Rz507KtOextwHSyc+5EqP8k9YqHXDiBjMxMLJY/VgCm28mqBTPYdQZC/O1nC5QngfiAItxZJwrDkoXDsBBmPcPcmTMAD/HbFrDqTC2GDHqCcKsfDXq9wvAeAYQF+wEeNo1/gBkHmjL4s6GEAWPOvdbM17+4/Jtp2Gh5ewdefWAuJ5NuyzbZkx7L2K938+gnb1M0yMqp2DgKFi6U425K/7BClIwqQrIlFpvlj8syWYxM9q5axKyUImCapJ/ay/jvdvH8xwNpXuHs4TmGcf48p7/Bww9TZhJSqApzp08h47ex2Fs9zGNNy+CgDGBy9HAR3EmpZ8/gtAJksmjKOJwVO9KmdvZjKP8L8kFBM3E70zm8diGDPv+RVo8/S9vYwxSt2oD/jW3CzE9e4aH2bxJPBA8+2P6vTyW3+FOtSSeKNSsObhfpmQ6KRhYkZtc+0jwQcIW/fJaLfksN9h+Kpe2ADtTxg9SYsXy7uPLlyxmA6Sbj1GGmThpP4LndrL9tP86xxAVM+HLduZky2RbnpnIOpzwbFoP4dVN5/qkNZ1ciWfHscpuULBGFzW6jVf0w6txyN1FrZ9OguJ2srAws1ggsFxyEanrcpKWlg2E5OxrnzsDpNs+/jxaLgduZQVpaGmZGIu+/NJjGL71Hu7KBF4/emR5+mfY5cW1fpc3+77ntgTsZ0q01T73TmhVzPybENHP+bAwbpRrcwn0Nfn9LXKQ73TjsNtrf8fD52dq1O3tQvzstmSR7EBF+Hel63/OXeGMNIspfxy0dzo6gTfv6WzDdeEwLWalpmJddyxi4Ew8x8OXnCfO34olZwbZ9m3nm6XVYyGTznixsnwxg47cBmAk7SDUvPkjZarHiSdzMkE+n8MT7YykV7CDWYVC50c2UKejATCxAY9vrlKjQmJZ1gtg5ewRznM0Y2LzmRQdWi1yKYXXQuGkDTNNDypG1DB00iuvbtWbhtA8Zd1Nl7r2pEn6OKzy42vRwcOFw+m9vwM1VIvnmk3f4bPxPzF8zn1al/C4zwmPy//bOO7yKat3/n913OiGFBAghJjSRIggR6YggoBRD0yBIs4ACCooiekWsYKV4RKogXPoBKaIoHWmRTmgKhBQggTSys+vM+v2xA0l2dgic33PvzTmuz/PkebJnz6y9Zs3Mmu9617ve90rSKkZPWUV4dHV8tXZ2XbiCadVs7DX1rFr2LU5M+JlL24Vzrl4k44aNVb82ZVzvBz3KVLHZrBQWaopiFOqLqilwCh3ljA+L28bL6Eq1ZHMhtDOJsTeYtvBnxj3XhUCDDg0Cu8OOzlDcVhqdgVY9BtCqZAHOS2yfN/N2+Qadjrotu9CnR6R70UCfBEaW6BC15ioEFbWPmn+cr97/njw6s2lHMk/Ex+FvNqLVFAU299qsAqfNgl3VoNVo8GnUhw3r+xNh2YROr8Fhs2IVdrQ6LbmZ+TQd9hqNI3xJ3/klPV5YyVurtzDwgeAyMywBIVHExdUi15COUfdniRY3EhvfmZ6P1iZj2UiG/NGWzRvGl7HGeRN95SNKDFy1JH6wlKd9/bEdW8kT06P4fltPhM1KoeoWf0azLwUZSaxdPJfCrEwK7flkpN0k9JIvjeo+S82/4SL3yi/QRAHJh/ahD41hytczCfEzkHb8Et+8MZDTVbqy8stFtB04huQsf1r4HGLHxl/uUJgPL035iLRjO/lu9km0/iH8lVmA8FfLxKS58jLKWwAAFnlJREFUExqtx5SjYuWvY0cQBrBlZaBqw+7y3ByE1XqQ9h07EVDkm1G4bznJUc3o0CmuaMRgI9BZSMOososENGgIfagf079+zu2Dln2E5AX9iyLwa6jerDVtDdO4kJFNi+rVcNhtaM2mUqssXdYcdv+yC8XXH7NBB2o+qfmCyKIz1Ggg++Ix9u+7ggZon9CNgMJsFHxL3DyCnBP/zeIDPsz87FE+eGk96CN5f+bXnO3cnzNpH9Lc5US5iwwLjssH6TFyFn0G96JamZG3SvLmRfzIk2z+ZhSRpQLEOUhJTuaGVeXPC5nkZ17g6B8BaMgjJy+PnfNf56jShQ6Z1/AP8SuqdXn10WAIiWbCx9OpH+JLweYJXN7cmC++GoxRvcb0Y4sIGfsew1rXwHp4ARt2bih1dM6lXbw2fCTJQY9RZcl8zsREE10rigZatw1R6x9JiyaCs6mpWIKv8tbUeQQ8EU5uYUMi/Cv/IympHFhvXODndWs4laWlft936NGjPaP67eDzaRN5dIqV2g0eoGN8Xeyuip47gX+TRFZ+OhizFvp3asYTPYfyxYwfaT2tXwVxGDVEPpTAirV9MRi0qJarjD++lyrDp/JfXYMovHqGLzdlMG5opwrjOd5CdTlIPnII7RUTeefSEcS5v1Bc5AsTxgp8jrVaDZmndrFqRabboT/nCLm+YXSPr0NoQE0enJ/Ii+/nMO/dp/EzgN1mRa+v2LFAFP2h0ZTqQ5356fzww14eG5xATQ9roFAVfvtuJgdrD6KW2YfQzI082/8grZ4Zx9h+rcvPOiMcXE76heO5ZgJ8i0VyOlFMmfEKOecOchB447Px4LyC5dxldl80oKcpX37TFIPrJk6CKS3RBVkXjrJ/XzoFV5MpLDHF6XQ4EBr35ztlwnFmX2Tt8uVuH7TDlzjns5Xl2r9Avc659Bv8vH4Np6uYcJw6g1M0K3Ws2dcfbKl89N0OJv7358T6Wti3cQN5ATXdlkrFh1rk0KRNH5rHViHzwCbSItvz8H1V/pb+Z/DvINA0ATR6pBOdI/QoThu52fkERMcz+R8r2fP7UTQaLTXqPkSNumA7dujOZQkX2+ZOYsxGX1bOf5v7w0zkbv+GjXcfaN9djIeaE4qTm7k3uKEFe74V1x1TCwkUh90dcFHbhtmL25UaEQb4GDD6VCE0LOy2w3i3QS+i3DzPp6/9QJfX3qFpzUD3qM3r6Eu9nSJJG9yIt/8xj+gHIgAVu82CLsC31PSdwS+Ux596qniDK4vDwVosAtC4fRPC6sbT6VH3FKdw2biSko5DUdEXWf2s107xxoR1DJi5gIahxYEKq9Z7nHX7jiMiAsk+6MDuqjhNk1YHN06l0qBDAo/V8rg9hZNVR1dyPKoD4WV6eyPOgkyu5WgIbtiLCTFOsnOycVryGfHyJEwGLfF6I0d2naXGALd/jud1LNmG9yLYEaJUWiqTT1VyrT406NiKEWP6UdPfQ2kaqtG1V3OmbljIiHcWEzpkAfPGd8dld+AQ+iI/OImkPJxc/n0Z01JyeSzxBXrFBJJ2cDmJndtTrf2zzJi/kYLTPzF7QybdOjdkwftr71ycRkdoRMRt621k43b0b1KLhUl7uWlNwK9CZaXDUI6+8Q2P5sGU95m5sTqvP1GvTOiHWwjVhdVqR9hsCJ2R+5s+xMO1fcnK/Rl1fTbbth+mfYydG84sVs3+Lw76FPnLJltpVPpk0Gg0hDdsR78Bt3zQfFk5b5n7W70/3YYn8EHfRaS/2oe6VfXYrBZ0ppJSRpB3/jfGTVxAwH1RBJjcIT0OX1Hpibtj1KKyY+lnvP27GVQFu92Jz+GmDGxXt1Q5hZlJfL3PxJxvhzJ20hri+71KcP4r9Js6kace24YQqvdhotZEbNuniC36WHBwKcNXW3g5oSkmzyYUVnbPeo/UjtOZ9lw8xlJtrGIrtOJSndgcKqH3NSE+vha5KXZ8Nm8n5eQe9MH3k2ex4u9bvNCpPIyhMTw1cKDbBy1nCxlBjzFwoNsH7dDyxXTtleD2QfvlCHOPlz7Wdj2ZL0Y+SV6nGTRS/2TTuhOk5mp4skMroqqawWoiJmAlLr0Oe9pBRg0dTX6rsayb8xrB3gOI/sdT+QVaCRyFeVw8dZj9v+9h586j+NVpjjO0Dt2aVLur1W/KtV+Y/PE23ti6k/vDSrw07zHEthAlX+ACDAE0bd+5aIrzMt//lI9K+WkaLCkHWbc3FR/PFzdw7NJ1rtsPsGXzxVLbbVl/kmJ3sn33UeoOaIeftjyBoVD8yJtp3q377XpaLQXoAv2LL7oji3ULF5JGVfxv+1pYOHJVpc4txSEElw+uZ7GpKhrAlXuJLT8dpOvErxjRsQ5Y01i7ZB1Pfz2LDvUC0CilI0n71awNgLVOVwY1L92VekWjQS9ukrTzJxxVPVtQ4ehfWYia3i9YXMsuxAGO62d4Ydh7PP7OdDqFHeCbdSd57vXXqGk/ytzd/gye7A7oq4pyhLRQ7y2HqUc5vuH1mbt+B0HhwUUO/wr5V1NITs3nwWaNMem0RDd/hKT3l9Dtq5VMH9oGhMIfGzdi7JHAg9IHTVIBVep159XEMG4tQI9q0Z81q+uxaP4KcgudxDZ/kmnNwZm6/94L1/lQvZYvarLj3gYq3tD60GXcm+wYPZklVT9jcJva3vtFZw571m0gx6inyeABXD6yk5vn9LjyIunVIZ+D2zfjyKqO1b8F497/kIf8NW4ftNPzPHzQvOdCFiUGUYaYDjw/tIBQXyOgUlhowVAqfpeGoDqdWbi2c4n6XeLlw9vh9sBVR4fECbxXNMUJ4HCUzmDjzDnL52M+4tnxM2jin15UtIEWgz9gYfA2wvwNuJx2HI6KOxud1sbu75fzbO94ogM8WlApJPVsCvY2qhdLk0LSji1cs2koqNaCRuI4v/xyGsWWT+dGkfy2aSuuWg6uWfJoHuTueNQ7XfR7uh9K75yWtIWp6y7TPfIQ+2M70Kzl43SNrlY8IDXVpV6cjj9O/c6mJR9j6PkuS98ZSpW/qTiDfzOB5hNUjWZtu9GsbTeGPXeMDydM4OUhFnYe/Jzo289X+XeQmptO1pVrHD95meyQSAqvn+NkShaCPLJu5BAUHnxX1gshVJTbN7HAmf0Xi6Z9wCYNOC2nyKMlCuUJNA2BddoxuI73sp17vyc5ui1P9W1URnQ+66UeCIGqqqiAUFWEcHkXF6qL3GwLppAqxedoDKPXyAml49m4sri64BUKhNt/QAWiWvZk8JDY2+czfOytCjg5tnUncf1fI75WcTgPb1cgrN1gutyuOGUSoRejQa/1oWZcPeqFebSgcJESGsCJO3YgLg5tmscfmtqMiw4jLLwv9VYl0GFSA9Z0OMbxDpNpVScQcLeb18oKgaoKhKqiqkVyVwhUoaIK1f0CKGp3txVTKXE+gtzMNDIup/LrxpOkpGWQnnmTiIat6NO7G1p7HjvXz2HC25uJaRzO8SPnKBj0MEFaK9uS/iLhSS/1kUhKYSAwpAp6LTismaxeuJALuRoCgkKo+2g/TCh3HCBWhFCd5Oc6qFqzAb7m/39zrr5qY8a9PpAefZ/g1JvTmTCwI2GB5lL105jC6JI4zB1g1niGTw7ZmTGxE6uX5dBreCItY8M4u+UT/Nu2pa5vBV5xXvo/UWLYir4WI8aNKvrgouBmNsYaxbFGVFch6alXUHWGYp8r11UKHMV9mwa4eeMKqakuNIDj8q+8O+sgU+fN5D4/Pao9lzVzlhA8Zg79HonEciW9uDLGUDom9AfAJ7QaNfwrnl7V6PT46EyEhIUT7hm5QNHgZ9RTpUZ1j5hjAAbadE8ABK68+ny36DRtuj7OpS2LCX28N60b3Yex8A+GLTJSv6q/u6XKG7hyp37by74e/XTco0PYtrsnzdrEuRevo+IovEm2U0twkB8abSAtm9Si38CBtBo9i2VTBxFkUkhauZqw3n1LvOP/PlRugaYKhHqVn5bO5S+/sg9lRLNO9PS/wT/nfYtZC8qVg1iEq9ybyBDbg57tpzNzaHe2N2pI175DiKkdhWXtfL5b1YyPRvW4K4GmOBUU160F7Fq6JI6hW+IgqupAsaVzPk1b3LBqOSbschCKQFHvLr+bqjjJP7+XBd/Z0QHCmk66Yi8eAan5JG0/gCGqLjUCbfy2L5W6ibEYSzzfmjIetwJVca/WdP+GiqqUUx+NgSY9Ez0q5UR1qnhOZroKL7HttxNo/IPQZezmXLmnKFCFgYga9xHnZYrzSJAZxeUqp01VspJ+YOE+f9YseIs6Ie5uoEviS2zfIdi4L4cVX44npKhYVVVQHd7KcmLPzmTV9wsI8zOgZjkI5Rzzv5uDVjjIiu5C7q7VzDlhQk3fj1W4SllUT238gvGLU+kz+Fke69eNuJgoAsx6zu5ewdj5v1KtWXvmb9tLtCmVKUMH8uyLf/HhxAHsTU1jyN93sCj5FzD6hPPMC+PITE/hxP5tfP/hi7xqacfarZ9z/79oiXXkXOW3M0YSPutNoLe0IPdSluUav/7znzjjOrNu1fu88eoEuiyKpv/wFxiU0L1MmjZb6h4mT1pF/JQlaH2C6d7YRv8BT/Pu6mVc/O0Aw5/7Gk8DkifeZhaEULwPxlQ7Odl2zA1KxABQHGRdu4pq9C0WPEouNmexQFGFoPBmDtk33JURpvt5ecwDYFfBx8YfPy4jpPMw+j8UWSxEvfx+19EfYfCtMP4AaDRoXAWcP3MSi2e4AZHHdYuTiDupJ6Gwf9ksPlhqIT6hKw+0imfs0GHsGTOXZxzLyYjqTVSwD+7+v/z3z71YVIXnun1DCC2bazmbtJvTp5M5l5ZDcI04mrVqzUOBJi7uWcbs1UfRaAJo0bYVfiYdqvUyKzf/yWjv2a/+46nUAk0VKkIbSY9Bz/NotYrfXLZjfizY8HP5RjRDdT5etYte+47gU6sRLRrUxJL5EG2fLyQ+vhFlwmmVg6K4cLkcRdZuHxIHFwfi0ZlrEBNwhqXfLuPAgd/Z/us+en494u4KBpyKguK6u8TGqqol6sHOjHxxIEZAzTnB7rnbCLzlTKL1p3Ztf7758AW++GEr2ugnWNu9YQXTwQo2myiyDAmcigah3kOiZdWOYlexeTgm632iad4oj3WLZ/LeZ0sxNx5CcICX209Vsak57Ni4jKsBni8HlcPJGdiqeE+Sfv38Ab79WWXip+9SJ6j4YvrXakT3wk/QDHidJiHFLwSX4kI4XWU7HeHCL7w+icNHEhvsJYrnqLG3/7UdD2H1vu2Yb5+KlhaDP2HnYBMmo3tj/rUz/LBgM9aqDXnvH98Sfnu5cAjT1m7l81dHM7Dzo2T6teZqoUr1it5Akr81QjjISjnPOaX08xPVtBNvfdKU1Yu3knL+HHoTuK6mYlOc3sP0AGh9qREXya/b1rPjsRhiAjUk/biE2JFTeaVz1D1b4YQQOFWF6ylHWTp7L/tOZtD1+bfo9WANII6Faxry1RsvMvftwUx+JZQREycx9e3hROhBtV3n28/mEP3mCl55qhlmLfi3Gsbovoe5dmgB+280YvojNRFOB3mFdnxMDmz2suflUhSs19M4ffKkOzTQ9TSsqrN46lO1cT0rD4NfAEbnZf447iAioTjngtZUhWYPty5dqPMCQSZ3n4gqUAWER9enSdMaXh3YW/QbVeqzUFwIUUaygMZJRnoGeoMB1+UMCso1Xgl0phDi23SinmeEANdVDgabsSrqrRnYMsfmXtzF/CQjGzfPolmoFkQjRj3TmI8O7SXnTC7jPx5KkFEDCFyKgvCysEQIcFpyOXvyJEYgrUCLoqZy8qQPqNdQjP6knj+D7oYZR2o2LjWsVFL3L1/qzrQNF2gQ34Gnn0lkxCutCfXVcT3tPGtnz2b+9kye+3IzU66vYMg7w4g0zaRbWBobCnS88TftEiu1QMMvkolfvkXzMr5I3tHXaMOMhW2pHVT+/sbACNp1Lc7D6BceS+fwe6tWUHQzenhZVXkLU7X6DHqhLk/2eJhF9ZPp1aluuft60rjPGD6qV/+ufOqiWvZjfrPQ24FNNQF1+Oy3TYRH3NqiJTS2FW/PXkKTVisIbZNAq8gKStaYiR+1gPvaxwI6Hhn6Nu1iYu6+o9YF8PzYidT29TDbazSE1G7C0ElfEVGnC6GPdCbGSyoAofWj04jRDHrqSSI9p1eEQg2TSvsGcV7bxxgcw9jxLQj0SHyenXWDBgPfI7Z66WjEfrU7MOObSMI8CzPW591Zs6kRWHEET2PdbqxY8yShQcWFGI2lR8S+VWPo9/w4rxkr9L41Gf/1D/R58Rg7dp7CVSggoMxuEslt1Ds4SOp8qzLgxQEeW604neUINGMck9dvpduBvRzZtoVL1aKo33EEU+rX5l8xwDms+VzMvcGRL94jesoU3vk0nvASz5FvWD0mzd3EM6ePsP2Ui549H3FbtJ3ZbJnxIVV7TeSljk0oziFupsvAoUydu4/RH79JsFmHYsnl8NYVLFz0Azv3WJgwoeRzLVBcKmi1GEwm9ICi14Fa0p9O5ULSJv4xazGnM7M4kdqQVc3j7nxiQsFlV3EVuTU4VRWd0/tA0evhqh3V7sThOfesOkk/tYflixfxy95DmJq+UCqVV/F+KoXWa+zcuolzZSxo+Zy/XkiEy7vly5L+Bx9+sYuRb73rFmcAGj1N+r5JrzmzMY2dyKMxtwaiApfLhcvh8G5wVDToTSZMQGzvtyiWobUY/fGc4v10GkSpmSA9vUd9QPtXI6lXuzp+Ri25l4+wcN6v5JsjaByfyNKhcVT1M4D6BvO0gbw0ZgCzjXpSghOocCHyfypCIpFIJP8muMSnb74jtmcqd7W381qymPTON+J8tut/uF5FKDZxYOV8seFEprj7X1RFzoVjYse5XKF6fmO/KrasWCpScqxljjq+6Vvx0idrRJa95AEu8fuKb8WS/RniVgspuX+KvYcuCodHkxVc+FkM6dlHfL3lrHBWVEX7eTH1xeHiQGquUK3XxBcvjRVrj2SVqW955GfsEi9P/kZcL6dRLOmHxPAevcX3uy8IxUuhhUlLRHzHl8S2pBPixAmPv2N7xPsDnxCztl3yWp9Du3aIDM/mUx3i/J714sd9KcJZ6iBFnFn+upgwY6vHdiHsVqtYvnpHxW0lhHCkHBZHL924Q/uoIvvaFZFtK//7/JRD4qNxg0SbtiNFUtb/0v1bydAIcS9ufxKJRCL5v8Rmd2A23Z3HtFBVFDRenMf/PRCKHZtLj9mkKzN1pyoKQqtFVzpiNoqi3k6dd2dUrFY7ZrPZu9WqVEVcWG0KZrMJDSp2p3rbheFuUFUHLkWH0VBOvYSCxeLEx9/sdbZCteaTadURHuxXNsuJULiZZ8EUEIDxbn0GhYrN7sJkNnq0q8BpLUQYfe++rP9BVMWJpcCKyf8ezu0/CCnQJBKJRCKRSCoZf1PXO4lEIpFIJJLKixRoEolEIpFIJJUMKdAkEolEIpFIKhlSoEkkEolEIpFUMqRAk0gkEolEIqlkSIEmkUgkEolEUsmQAk0ikUgkEomkkiEFmkQikUgkEkklQwo0iUQikUgkkkqGFGgSiUQikUgklQwp0CQSiUQikUgqGVKgSSQSiUQikVQypECTSCQSiUQiqWRIgSaRSCQSiURSyZACTSKRSCQSiaSSIQWaRCKRSCQSSSVDCjSJRCKRSCSSSsb/A5YTVg1csSODAAAAAElFTkSuQmCC" alt="" />

自然失业率和通货膨胀率

  自然失业率:

  在没有货币因素干扰下,由实际因素造成的失业。自然失业率即是一个不会造成通货膨胀的失业率,也是劳动市场处于供求稳定状态的失业率。失业辛高于自然失业率时,工资有下降压力;失业率低于自然失业率时,工资有上升压力。

  从整个经济看来,任何时候都会有一些正在寻找工作的人,经济学家把在这种情况下的失业称为自然失业率,所以,经济学家对自然失业率的定义,有时被称作”充分就业状态下的失业率”,有时也被称作无加速通货膨胀下的失业率。

  通货膨胀率:

  通货膨胀率(rateofinflation)又指物价变化率,反映货币超发量占实际需求量的比重,在经济学中是指物价平均水平上升幅度,一般运用居民消费价格指数(CPI)、生产者价格指数(PPI)和折算价格指数(GNP)来反映通货膨胀的程度。

附件列表


0

免责声明:

  • • 会计网百科的词条系由网友创建、编辑和维护,如您发现会计网百科词条内容不准确或不完善,欢迎您联系网站管理员开通编辑权限,前往词条编辑页共同参与该词条内容的编辑和修正;如您发现词条内容涉嫌侵权,请通过 tougao@kuaiji.com 与我们联系,我们将按照相关法律规定及时处理。
  • • 未经许可,禁止商业网站等复制、抓取会计网百科内容;合理使用者,请注明来源于baike.kuaiji.com。

同义词

暂无同义词