登录 | 注册
高级搜索
会计百科  >  经济  >  净出口函数

净出口函数

经济术语

  净出口函数是指:nx=a-γy+ne。式中,a、γ和n均为参数。参数γ被称为边际进口倾向,即净出口变动与引起这种变动的收入变动的比率。e表示实际汇率。对于净出口函数,为了强调实际汇率对净出口的影响,常将其简化为:nx=nx(e)。

目录

净出口函数的分析

  对于净出口函数,为了强调实际汇率对净出口的影响,常将其简化为:nx=nx(e)。净出口与实际汇率的关系可用下图来表示。

ESGJD36DXFBEOD7PmEYkkqlKBaLXHDBBfz5n/8548eP59ChQyxevJh9+/ZRXV2N67q4rptUnURERIYSBachLpPJkE6n6e7uplAoYNs2hUKBG2+8kYkTJ3L48GGeeeYZli5dShRFlEolstks7e3t5V66iIjIGafgNMTl8/mk2pROp8lms4RhCMDll1/OuHHjkst/V69eTaFQAHrHGajHSUREhhoFpyHOdV3CMMS2bfL5PF1dXdTV1VEsFvnKV77CVVddxbBhw3jjjTeSqhNAfX19mVcuIiJy5ik4DXGWZSXTw7PZbFJxchwHy7L4whe+wNixY4miiOeff55XX30Vz/MA/miDeFy5EhERGSwUnOQ9TZo0ieuvv55isUhLSwvLly+nra0N6A1GURQlLyfre7WLiIjIYKDgNMTFV6/8oZeRI0eycOFCRo0axeHDh1m6dCkbNmwAeqeJ93VyeFJwEhGRwUbBSd5TFEVMnTqVBQsWEEURu3fv5je/+Q0tLS04jgP0D19/qPokIiIyGCg4yXsqlUo0NDRwyy23MGPGDIrFIitWrGDNmjWn7HGKq0wKTyIiMhgpOA1xf2yrzrIsXNdl2rRpXH/99TQ0NLB3714WL17Mrl27KJVKp2wC1zadiIgMRgpO8p5s2yYMQ6qrq7npppuYP38+tm2zbNkyFi1aRE9PD57n6QSdiIgMCQpO8p5M08TzPNLpNOeffz4333wzjY2N7N+/n9/+9rd4nofneQRBoO05EREZ9BSc5D1FUZQMyQS4/vrrefDBBxk+fDh79uzhG9/4BqVSCcMwaGtro6urq1+f03uNKxARERloFJzkPUVRhGmamKaZXM1y5ZVXcv3119PR0cGyZcv4t3/7N2zbJpfLYRgGHR0ddHd3KyyJiMigo+Ak70tccTIMgzlz5nDHHXcwYcIEOjo6+PWvf82LL76I4zi4rkt1dXW/O+9EREQGCwUneU/xtpvnecn4gTg83XPPPWSzWXbv3s33v/99WlpaKBaLyUTx+GoWERGRwULBSd5TPB08iqKkglQsFmlsbOT2229n3LhxtLa2smXLFlauXEkmk6Gzs5MwDMlkMuVcuoiIyEdOwUneUxAEADiOk4SoVCpFJpNh0qRJPPDAA1RVVdHS0sLf/d3f0dPTQ3V1dTLGQEREZDBRcJL35DgOvu9j2zaWZfULQ7Ztc+edd7Jw4ULa29tZuXIljz32GD09PQB0d3eXa9kiIiKnhYKTvCfLsujo6Ehe9zyPKIoIggDDMBg+fDh/9md/xvjx45kxYwaPPPIIe/fuJZ/PU1NTU+bVi4iIfLQUnOSPamhoSF5Pp9PJVSwA7e3tTJo0if/8n/8zxWKRN998k+9+97sUCoVkay9uFo9/hd6eqfjPRUREBgoFJ/lQamtrMQyDhQsXcuGFF+I4Dm+++SbPP/88PT095PN5fN8HeqeQl0olfN9P7sITEREZSBSc5EMJgoCqqiomTJjAPffcg23bbN++nUceeYQ9e/ZQVVWF4zhJ35NlWf1O6omIiAwkCk7yoXR2dmKaJoVCgSuuuIJrr70WgNWrV7Ns2TKKxSKWZREEQTILKt7m03UsIiIy0Cg4yYdSXd5ec+UAACAASURBVF1NGIbU1NSQy+X4yle+wpw5c8jn8/ziF7/gJz/5CW1tbdTU1CQBKT6dFw/UBBSgRERkQFBwkg/FsqxkG85xHGbNmsWnP/1pGhsb2bBhA3/7t3/LkiVLAHBdl3w+n/Q3xZWnvhSeRESkkik4yYfmOA6e52FZFoVCgU9+8pN85jOf4ayzzuLQoUM88sgjrFu3DsMw+p2sg1NXmhSeRESkUtnlXoAMbGEY4rpuEohs22bEiBF84xvfoLm5mS1btrBixQqWL1/O7NmzSaVSGIZBqVTCtt/98YuiqN8pu5PfFhERqQSqOMmHEvcp9f3VMAwymQwPPfQQkydPZtiwYfzgBz/gb/7mb5KrWxzHwTCMZJhmfLVLvI0XV6dEREQqiYKTfCT6bq/FlSLDMLjnnntoamqis7OTZcuWsW7dOorFItB7gXB8ys6yrGRIZly96ts8LiIiUgn0yCQfyql6lAzDwDRNTNPkk5/8JPfffz+dnZ1s2rSJ73//+7S2tiaTw33f77ctp9N1IiJSyRSc5CPVd6stPjl3xx13cOGFF2LbNk8//TQrV66kUCiQSqUolUoEQZCEpThw6UoWERGpRApO8qGcqjrUNzjl83nq6ur42te+RlNTE4VCgYcffpjVq1cTBAGu62LbdtLrFIZhUrFSc7iIiFQanaqTD+XkcHPy26lUiiAIuOmmm9i2bRvHjx9nzZo1fPe73wXgqquuwjRNwjBMmsTj0HSqOU8iIiLlpOAkH8ofqwrFTd9RFHHzzTdz8OBBFi9ezMqVK6mrq6OpqYna2trkTrt4207VJhERqUTaqpPTIg5LnucB0NHRwYQJE/jc5z7H+PHjGTduHEuWLGHv3r20tLQQRRGWZeE4TvLx8YgCERGRSqHgJKdF3OMUz2uqrq4ml8sxZ84c/tf/+l+cc845FItF/uzP/oxly5bh+z7FYpFisZhcGhyPJjj5RZcDDxx9/65O9SIiMtAoOMkZEfcrRVHEjBkzuPrqq5kyZQqdnZ385Cc/Yfv27TQ3Nyd9Tqo4iYhIJVJwktPKMIx+Acj3fUaOHMn8+fO57bbb2LVrFy0tLfzjP/4je/fupaqqikKhQDab1eRwERGpOGoOl9MuCIKk4hQEAZ7nMW7cOO677z5WrlzJpk2bWL58OY7jMGvWLKqrqykWi/3ushMREakEqjjJaRUEAY7jJOMGbNumWCwSRRFTp07lm9/8Jpdeeim7d+9m5cqVfO973+PQoUOkUilVnEREpOLoKb2cVqVSiVQqBUCxWCSTySThqVQqcdFFF/G9732P2tpaFi1axA9/+EPS6TT/7b/9N1WcRESk4qjiJKdVHH4Mw8C27eRi33Q6TXd3N6lUiqamJh599FFGjBgBwBNPPMFjjz2WjDIQERGpFApOclpZlkV3dzdRFOE4Dj09PRSLxWRUQRiG+L5PR0cH//f//l9qa2vZvn07Tz75JNu3by/38kVERPpRcJLTrqqqKpkEXl1dnWzdZbNZoijCdV3q6uqYPHky99xzD7lcjhUrVvCNb3yDt99+G4B8Po/neUnfU0dHh6aLDwAnX/p88ouIyECj4CRl1d3dDUAYhkycOJE//dM/5d5778WyLF599VW+/vWvc/ToUTKZDKZpYts2hUIhOXknIiJyJik4SVnV1dUB0NXVRbFYZMKECdx666184hOfwDRNXn31Vf7qr/6K1tbWZNsvk8mQz+dxXbfMqxcRkaFGwUnKLp/Pk8vlkobx888/nwceeIALLrgA13X51a9+xT//8z9z9OhRUqkUHR0d5HI5VZxEROSMU3CSsvJ9nyiKME0T0zQJw5Camhouv/xyPvvZzzJp0iQKhQI/+9nP+NGPfsTRo0epqakB3r3GRURE5ExRcJKychyHqqoqPM+jq6sL13XxPI9MJsOdd97Jl770JUaNGsVbb73Fj3/8YxYvXpxUmhzHKfPq5Y/RJb8iMtgoOElZ+b4PgGmauK5LKpUiiiI8z8OyLG677Ta+8pWvMHbsWHzf58knn+RHP/oRxWIxaSwXERE5UzSaWcrKcRyiKMK2bYIg4Pjx49TU1FBTU0NHRwc1NTU8+OCDAPzjP/4j69evZ/jw4YwaNYobb7yxzKsXEZGhRsFJyireron7nBobG5O3q6uryefzpNNp/tN/+k9UVVXxwx/+kKVLl7JhwwaWLl3KV7/6VRobG6mvr08+p+d5dHR0JJ9LykezmkRksNFWnVS0bDZLPp/HsiwWLFjApz71KcaMGcPBgwd54403eOSRRzAMg+bm5mTrrr29ndra2mQbUERE5KOiipNUPNd1KRaL1NfXc+uttxIEAY899hirV6+mvb2dMAz52te+Rjabpaenh4aGBlpaWlRxEhGRj5yCk5TVH9vKifuc2tvb6ejoYMyYMXzxi19kxIgRtLa20tzczC9+8Qvq6+u59957GTVqFGEY4rouQRBoZIGIiHykFJxkQHBdF9u2MQyDdDrNddddRyaTYcmSJWzYsIHvfve7bNq0iS9/+ctMnz4dwzAUnERE5COnHiepaOl0miAIknlPYRjS0dFBVVUVN998M1/+8pe57777sG2bn/70p/z1X/81L730EpZlac6TiIh85FRxkormOA6e5+E4Dr7vE4ZhEqYAmpqaGD58OLt27eLZZ59lyZIltLS0MHLkSD72sY/R0NBQ5u9AREQGE1WcpKLFW27xdSyGYeC6LlEUJX+WzWb50pe+xIwZM7Asi127dvGXf/mX9PT0lHv5IiIyyCg4ScXLZrMApFIpXNft93vx/KcZM2bwX/7Lf+HTn/40LS0tbNiwgfvuu4+HH36Yrq6uZF5UEAQUi0W6urpO+bWCICAIAl0HIiIip6StOhnQbNvmwIEDNDY2Mn/+fJqamujo6GDJkiWsWrWKQqFAoVBg4cKFjBkzhs7OTmpra7Ftm3w+D/ReFmzbNpZl9Wsmj6taIiIiMVWcZEArFAqMGjWKdDpNd3c3Z599Nn/xF3/BF7/4RWpqati5cycPPfQQS5YsoVQqUV1djWma+L5PNpslm82SSqWSrcC+lSaFJhEROZmCkwxo6XQ6CUI9PT0EQcDkyZP5/Oc/zz/90z8xbdo0tm7dyre//W0++9nP8sgjjxCGIZZl9duui7fowjBMXuIGdBERkZi26mTAKxQKOI7DiBEjMAyDQqHAxz72MSZPnpxc17Jp0yZWr15NU1MTnucBkMvl6OzsxDRNHMfBtm1Ms/e5RByeNAdKRET6UnCSAa1YLCaN4j09PZimSS6XAyCfz3PXXXfheR6ZTIbVq1fzgx/8gJ07d3LxxRfz5S9/merq6t/7nGEYAr39U3+sSVzbeSIiQ4uCkwxoqVQqOSkXV4sKhQKGYZDJZDAMgy9+8Yt84hOf4F/+5V/42c9+xiuvvMKRI0fIZrPcfffduK5LOp3Gsqykz8kwDAzD0Ok6ERHpR8FJBjTP87BtO6k6xUMyofdUXBRFdHd3M2bMGO666y6OHz/Oc889x0svvURXVxeu6zJmzBgmT57MuHHjSKVSQG/Vyfd9bFv/RERE5F16VJABLZ7rFDv5mpVSqYTruriuy0UXXcRf/MVfMHHiRJ5++mm2bdvGd77zHRzH4c477+RTn/oU06ZNo7m5mXQ6TVVVFYVCAdM0k3vy+jq5IqVtOxGRwU/BSQY10zRJp9P4vk9XVxdNTU381//6X5kwYQKPPvooa9euJZPJ8Pjjj7Njxw6+853vcPbZZxOGIe3t7dTU1CSzoGzbTkYXxNUshSURkaFF4whkUIuHXDqOQy6Xw7IsqqurWbhwId/5zneYN28e6XSaY8eOsWLFCr797W/z+OOPk8/nyeVytLe3k0qlqKmpAXorWIZhYJomhUKh39dSP5SIyOCnipMMarlcjkKhQBiGZDIZoPckXk1NDRdffDHf+c532Lp1Kz/5yU946aWXePbZZ9m5cyfbt2/nvvvuY9KkSQRBgO/7uK5LGIZJ9SmbzSb358VUhRIRGdwUnGTQcxyn31ymVCqVBKCZM2dyzjnnUF1dzYQJE3jiiSfYsmULra2t5PN57rvvPqZMmUI6naatrY1CoUBjY2NyZUs6nU4qTXFgOvltEREZPBScZFArFoukUqlkkKXv+0RRlIwgKBaLGIbBddddx9y5c7Ftm5UrV7J7925+8IMfsHHjRr7whS9w6623UldXR09PT3LSrqenh3Q6nXytk6tNqj6JiAw+Ck4yqKVSKUqlEr7v4zhOUn3q++fQ2wtVU1PDt7/9bZ555hl++MMf8vrrr7NixQqOHTvGnj17uO+++xg9ejQtLS0EQcDw4cP7fS5QWBIRGezUHC6DWj6fx7ZtMplMMgncMAzCMMTzPDo6Oti9ezeGYVAqlairq+Mzn/kMDz/8MA8++CC1tbVs27aN733ve3z961/nd7/7HdXV1QwfPpzW1lY1hIuIDDGqOMmgFg/GjMXVIMMwcF0Xx3GSa1eiKEoqSJMnT+bv/u7vcF2XF198ka1bt/Lcc89x4sQJ2tramDlzJk1NTUDvsMxSqZRs41VVVWGaJj09Pbium2wTRlGUXBxsmmYy1uDktYmISOVSxUnkDzAMg//+3/873/rWt7jpppvo6enht7/9LX/zN3/DokWL2LNnD5Zl0dnZSRiGDBs2jHQ6nYSjUqmEZVmUSiU8zyMMQ2zbTnqkfN8v57cnIiL/AQpOIv/fqSo+VVVVfPKTn+SnP/0pTz/9NPfeey+HDh3i5z//Obfffjtf/epX2bVrF9lsNqk6xcMx40qWZVlJNSsMQ4IgIIqi35tyLiIilU9bdTKkneralL5vl0olurq6KBQKXHXVVVxxxRX8z//5P1m0aBE7d+6ko6ODTZs28ZnPfIbbbrsNy7KSa2BOnDhBXV0d0DsSwTRNSqVSUomKt/BERGTgUHCSIe8PzV+KoohsNpsMzvR9H8uy+NM//VNmzJjBX/3VX9Ha2srGjRvZsWMHW7du5c4772TWrFkUi0UaGxvp6urCcZxke67vpcEnD88UEZHKp606kf/vVJf4lkolTNOkWCzieR6WZVFVVcW1117Lpk2bePDBB5k2bRrHjx/nxz/+MZ/+9Kf5h3/4B44cOYLv++RyuWTkged5FItFLMvqF6BERGTgsL71rW99q9yLOFMWLVrEW2+9hWma3HvvvUyZMkXP+KWfk38eLMtKJoSnUim6u7uprq5Opo9fc801jB49mo6ODoIgYM+ePWzZsoVNmzYRRRGpVArbtnFdN5knZVkWpmmeMqiJiEhl09NekfcQX9NSKpWStw3DoKOjg2HDhuF5Htdffz1NTU2sXbuWv/3bv2Xfvn2sWbOGo0ePMn/+fK6++mouv/xyMplM0tcUhmFy/52IiAwcCk4iJ+lb+TEMI9lqA5KgM2zYMKC3edx1XSZOnMjo0aO55pprWLp0Kf/6r//Kq6++yuuvv86SJUs477zz+MIXvsDZZ59NLpcjl8slVSjHcYiiKDmRF18RE4ZhMuspiiJMs3dnPR53oOZyEZEzT8FJ5EOIK1FRFGHbNiNGjGDu3LlkMhnuuusuli5dyt69e3n44Yd54YUXWLBgAbfffjvnn38+qVSKbDZLsVgkiqKkCb29vZ0gCMhms0mAij+/bdv9qlZxmBIRkTNDwUnkQ4irUfFUcMdxGDduHMOGDcO2bcaOHcuiRYvo7OykUCjw/PPPs2rVKm655Rb+8i//Et/3kwAUB6R0Oo1pmr835ykeZRA3lqsnSkTkzNPTVZEPIQ43hmEQBAH5fJ5isYjjOGQyGRYsWMDf//3f89BDDzFhwgSOHDnCvn37+Od//meuuOIKvva1r7Fq1SoMw8AwDDo7O/F9PwlHcTUKekcZGIaB53kEQaDgJCJSBqo4iXwIvu+TSqWSu+/iAAQkr9fU1HDDDTeQyWTYvXs3K1euZMmSJezZs4e3336b1atXc+utt3L33XczadIkgiCgp6eHTCZDV1cXhmGQyWSS5vL4kmIRETnzFJxEPoT4OhXDMPpVn+DdE3iFQgHbtpk9ezYf//jH+fjHP05jYyNvvPEG27Zt45133uH73/8+S5cu5Y477uCOO+5g9OjRFItFGhoaki26eOL4qUYZiIjImWFEfe+XGKTib/Guu+5i8eLF2LbNU089xYIFC/QAJB+ZKIrwfT8JNvHrtm1jmmaylZfL5Whra8NxHH7xi1/wi1/8gtWrV1NVVUVDQwP19fVcd9113Hvvvbiuy/Dhw5O78DzP+71TdyIicuao4iTyIZRKJQzDSLbQTn49vp8unjoOvRWpdDpNd3c3DzzwAE1NTfzqV79ixYoV7N27lyNHjnDgwAEWLVrEjTfeyA033MDcuXOxbTs5xQe9k8jT6XS5vnURkSFJwUnkQzj56pS+J+HiKlPc/wRQVVWVnJxLp9N0dHRwxRVXcPHFF7N69WqeeOIJli9fzjvvvMOhQ4fYv38/L7/8MjfddBMLFixgypQpSRjre5VLZ2cnDQ0NAHR3d5NKpZIRBkEQJNuG8VafiIj8xyg4iZRRLpejUCgAMG/ePC6//HK2bNnCr371K5YvX86BAwfYuHEj69ev52c/+xnXXXcd1113Heecc04yhNN1XbLZLN3d3QRBQBRFSUCL+6L6Brx4dEIYhppcLiLyASk4iZxGf6yHLq4Exf1RjuMwY8YMhg0bxg033MCyZctYtWoV69atY8uWLWzdupWf//zn3HLLLdx1113U1dUxfvx4stls8jnjqld7ezvZbDYJSUDSyK6LhkVE/mP0f06RMyw+rBCfxAuCgEKhQD6fT0YPTJgwgbPOOotJkyZx5513sn79ep577jnWrl1LS0sLjz/+OIsXL2bWrFl84hOfSO7Ls22bQqGAZVnkcrkkHMVVpvdai4iI/HEKTiKnUVxNOpX4903TJJPJJHOg4hNzpVKJhoYGGhoamDZtGjfffDOrVq3iiSee4JVXXqGlpYW1a9eydu1annrqKW666SZuuOGGJEAZhpHMgbIsK3mJ1xQEQdKwrgAlIvL+KDiJnGZxGDlVgIq35/qevjNNk1QqRSqVolAokE6niaIIy7KYP38+V1xxBStWrOCZZ55hy5YtvPXWW6xdu5YdO3bw7LPPcumllzJ//nyuu+46crlcv68XXxgcb9md7A/9voiI9FJwEimDOES5rksQBARBgGmaVFVVJe9TKBRwXRfP85ItvLhX6bLLLuOyyy5j5cqVvPrqq6xfv55NmzaxYcMGjh49yltvvcWqVau49957qa2tZdiwYcnogniEgmmap6w0KTyJiPxhCk4iZRRvl1mWhe/75PN5TNPEsiwcxyEMw6RPKb4QOJVKkc1mMQyDhQsXcsUVV9Dc3MyKFSt45ZVX2L17N+vWrePll1/m17/+NbNnz+aaa67hwgsvZMyYMWQyGRzH6Xd1y8lhSeFJROTUFJxETqO+4eOPBRHHcfrNgTrZqUYH2LbNsGHDqK2tZcqUKXzuc5/j7bff5plnnuF3v/sdr732Grt27WLp0qVMmDCBmTNnMmfOHC6//HJmzpxJd3c3NTU1dHZ2UlVVhed5uK6bVKPy+TyO4yThLQ5a8XR0wzAolUpJwDNNs9/7iIgMNgpOIgNY3/vr4i24pqYm/uRP/oRbb72VZ555hjfeeIPVq1fz2muvsWHDBlavXs2aNWuYNm0al156KZdddhnV1dXAu4EoDEO6u7uprq6mWCzS0dGRzIuKxaMUTh5roGqViAxmCk4iA1h8Sg56g0yxWMS2bRobGxkxYgSTJ09mx44dvPLKK7z44ousW7eOgwcPcuzYMV5++WUeffRRLrjgAmbPns3NN99MU1MThmHgeR7V1dW0traSSqWoq6tLvkZPTw+WZem6FxEZkhScRAawMAyTkQK2bSdBKp4NVSwWmTp1KtOnT+f+++9n7dq1LFmyhFWrVrF//366urrYunUra9as4Ze//CUXXngh1157LRMnTmTMmDE0NjYSRRHFYpEgCLBtO+mvir/+yaf04sZzEZHBSMFJZACL78OL78SLe6TiHqVMJpM0lQPMmjWLsWPHcuONN9Le3s73v/99tm3bxp49e2htbWX//v2sXr2aiy66iE996lNccsklSSO553kEQZD0WsX9UPHXB/rdhReGoQKUiAw6Ck4iA1zfoFIsFpMRA1EUJRUh6K1I1dTUUFtby1lnnUUURZx77rns27eP9evX89JLL7F8+XI2b97M66+/zk9/+lMuvfRS5s6dy/z585k5c2bSCxX3QMWhKh7aCe8O/VRwEpHBSMFJZACLe5ribTp4t2k7rhLF4aZYLNLW1kYURWSzWdLpNKNHjwZg4sSJ3HPPPbz++uts2bKF3/72t2zfvp233nqLbdu2sWjRIqZMmcLFF1/Mxz/+cc455xyGDx9OW1tbMvU8Dk99v76IyGCj4CQygMVTxeORAPD7E8rj4ZqO41BbW9vv9y3Lorq6OpkwHvc4XXnllbz00ks8/fTTHD16lBMnTnDs2DHWr1/P4sWLOe+88zj33HO56aabqK+vT66LgXf7ruIgJyIymBjRH7pIaxCJv8W77rqLxYsXY9s2Tz31FAsWLKj4Z8XFYpFUKkWxWMRxHHzfT67iME3zlLN9RN6vP/bPP5/Ps2nTJp599lmef/559u7dm4S0YrHI9OnTmTp1KvPnz+e8887jrLPOora2llKphGmamKZJd3c36XQay7KSn2eA7u5uXNcliqKkKtb3/jzf9/uNOjj536rGHohIOajiNECc6n6xk+fniJwOF198Meeccw633nora9asYe3atWzevJn9+/ezefNm1q1bx+9+97tksOb555/PWWedxdlnnw1ANpulUCiQyWSwLIv29naqq6sJwzCZjh4LgiB5cuA4TtL0DqcevikicqbpkXeA6HvEO64SqPFWTreqqipKpRKpVIoLLriAOXPmcPvtt/PKK6+wbt06Dh8+zMaNGzl48CAvvfQSL7/8MvX19UyfPp3LL7+cSZMmcccdd5BOp+nu7k4uKzZNM9lm9H0f6J2M7roupVIpeZJw8nZf3EMVhycRkTNNwanCxcfK4/k8lmVRKpXKvSwZJN5P+IhnQpmmSS6XY8yYMdxyyy3MmzePIAhYunQpy5cvZ+PGjZw4cYLu7m5eeukl1q1bx7Bhw/jlL3/J+PHjWbhwYfIxLS0tVFVVYRgGqVSKUqmUzImybbvfiAV490lC3ycPOrUnIuWgHqcKf9bat+cjfqCIH2T6NuSKnA59T+WVSiV838cwjOQ+uyAICMOQQqHA22+/zZtvvsnWrVt5/vnn2bx5M2PGjAGgs7MTy7K48cYbufbaa5kwYQKXXXYZx48fZ9iwYQAUCgUcx8GyrOTnPu57in/24/vwRETKRRWnCtd3Rk8+n6eqqgro7W/qOzVa5HSwbTsZfGnbNplMBnj35zEOMrlcjhkzZjBz5kzmzp2LaZocPXoUx3F45513qKqqwvd9nnnmGX79619TW1vLZz/7WS666CKmTZvG6NGjk5N98fZd/MQgrrLGfX5qCheRclJwGgDiB5K2tjYsy0qelfdtqhU5HUzTJJVKJSMPenp6iKII27aTHqVYXAWdOHEiX/3qV7n//vtpbGxky5YtbN68maVLl/LWW28RRRFtbW089NBDBEHA5MmTmTJlCrNmzWLmzJlkMhkcx2H06NFUVVWRTqeTWVHxFh3oahcRKQ8FpwEgDk7d3d3kcrnkNJ0eNOR0iyePG4aR9B/FvxfPh/J9n3Q6TTabTSpCuVyO+vp6DMPgqquu4uqrr+b+++/nzTffZPfu3WzcuJEVK1bQ0tLCtm3bWLNmDSNGjGDSpEn4vo/v+4wbN44vfelLjBo1ivHjx9PQ0JA0hQ+BDgMRqVDqcarwkn88hTkIAjzPA0gqTnHTuEgli3vy4qGYxWKR1tZW2tvbWbVqFWvWrGHLli0cOHCA48ePk81mqaqqorW1lYaGBurq6pg3bx4XXHBBMniz75OGrq6uZNRBXJHyPC9pOo9nncW9UvF9fkC/K2lOPqmnLUGR969vlBjs/25UcapwfU8TxSFJR7FlIIkDU/wzm0qlGDZsGFVVVXzhC1/gtttu48iRI7z55pusWrWKgwcPEgQBXV1d7N+/n4MHD/Lkk0/y/PPPk06nGTVqFHPmzOGSSy6hqamJKVOm4Ps+PT09SUiKe7H6DoiN15DP5/F9nyiKqKur67fWvj1U+jcmIqei4DRAxCeK4tf1P3UZCOLtvPjnNX5Wmk6nSafTySTxmTNnMnPmTG6++ebk1F5PTw/PPfcca9eu5fXXX6elpYWDBw+yceNGXnvtNRYvXszo0aO5/fbbaWhoYNq0acyYMSMZ1xFXuf5fe3ceHHd533H8vbu/vQ/tSmtJ1mFJNrZ8IGRig486NgSIAxkCDSRMQpp0mEwJbaFpMplJ20yaNn+kMy1NeiVNmqQwoaRDwh2gCRiMsbGx8QW2JduSbNnCsu7Vau/f7v76h+d5shIGCRuQJX1fMxrbOla/lSXtZ7/P9/k+ak6U0+nU0/Y9Hg92u51cLjfuSYm6Pvn5EuK9KV1Cn+0/RxKcZhC1FDFbvxnF7KWW0FRjtxqC6XQ6SafTxGIxfD6f3kmnKk633HILN954I93d3fT09LBz505effVV+vv76e7uZnh4mDNnzpDP51m5ciVXX3018+fPZ9WqVTQ1NeknHKU/M6Zp6lDldrvHVZfUL3+1hCdL4UK8d+/WATQbHr8kOM0w0hgrZpLS4DGxUqpmM4XDYf09XVqhKisr0wMyq6urqa+v5+qrr+bOO++kq6uLl19+me7ubnbv3s3Q0BAvvfQSzz//PIFAgMWLF9PY2Mi1115LbW0tjY2NVFRU4PV69S5B1TdYKBSwLEtXoyYGLSHE1JWODZm4gan08Wsm/4xJcJoBJn6jyZErYiYp7RsqnUs2cTp4m8OhsAAAIABJREFUKRViBgYG8Pv9hEIh/XE1NTU0NjayceNGxsbG2L17NwMDA7S3t7N161Z6e3tpa2tjz549PP744yxatIgVK1awePFimpubWb58OQ0NDXpulKqEyXgDId6biSsgKhiVvkx8W+nj2EwNTxKcZoiZ/E0m5q7SXWulSkccAOP6kAA98HLevHkkk0kymYz+OJfLRTabpVgs4vP5+NjHPobT6cSyLN544w327NnDvn37eO211+ju7ubkyZOcPHlSN5YvWbKEJUuWUF1dzZo1awiFQpSXlxMIBPQ0dPX5PR7Ph/SVEmL2mBicJoammU6C0wxwvm+22fINKGa3iRWc0hK+zWbDNE2cTidOp5NCoQCg/3Q6nXo5z+PxkMvlME3zbUcQORwO+vr6iEajtLa20tDQwKc+9Sm6u7vZvn07x44d44033uDEiRMcPnyYQ4cOEQqFiEQiuN1ufSDxqlWraGhoIBwO6/EGQoj3pvSJkgpLs6XSpEhwmiFKv9FkOUHMVBO3+ZfOVFJBZWJfVOloATVeQI04UEGssrJSN3WrZb2KigpWrlxJLpdjaGiI48ePs2fPHnbv3k1bWxv9/f1YlkVHRwdPP/00VVVVrFy5kvXr1/ORj3yE2tpaFi1aRDKZJBQKYbfb39Y0rh4E1LKj3W7XL/F4XB+RNHGZXUKZmA3OF4DUzya8e5P4TCbBSQgxK9lsNl3N8vl8hMNhmpqa2LRpEyMjI6TTaf7t3/6N4eFhent7OXXqFG+99RZ79uyhsbGRyspKli1bxrJly1ixYgVNTU2Ew2EymQxjY2P4fD6SySQOh4NAIKBDnVpWDIVCZDIZ/UBS2t+lRiaopUohxMwhP7VCiFnhfDtOTdPUFaBQKEQoFKKpqUlXjm644QZOnDjBnj179ATzs2fPcvz4cY4ePcqTTz5Jc3MzAJWVlXzxi19k8+bN+Hw+TNMkEomQTCaBc31Z6my//v5+xsbGiEajuhKmGuEdDocEJiFmMDlyZYavtQox1038FVb6b9XsrfqmSs+6syxr3FKhZVn09PSwe/duXnzxRQ4ePEg+n2doaIjOzk7sdjs1NTUUCgXC4TDr16/nmmuuob6+nrVr15LL5cjn84TDYZLJJH6/n2w2qytNE5fpJh7/IsRsM1m8mKmPv/K0Rwgxo03sH5r479LXlR79oqpA+Xxeh5j6+noqKytZv349sViMU6dOMTg4yP79+3nllVfo6urCZrMxOjrKU089xe9+9zui0SibNm2isbGR1tZWVq1apXf9qQnlxWJRH/Pidrv1eZNCiJlHgpMQYlaYuFRns9n0WIHzDeOD8Y2sitvtZv78+cyfP5+lS5eSz+e588476e3t5dFHH2XHjh2cPXuWs2fPcvLkSU6dOsWpU6fwer2EQiEaGxtZunQp69evp7W1lfLycsLhsB6ZkM/nSSaTZLNZysvLP/CvixDi/SXBSQgxa0wMT+/US6TeJ5PJjKv+mKapG7cdDofuW3I6nYTDYT7/+c/z53/+56TTafbs2cOJEyfYu3cvBw8epLe3l97eXjo6OtizZw+vvPIKyWSSlpYW1q1bxxVXXEFjYyPV1dX4/X69404IMbNIcBJCzFqqt0lR4xDUixpwWXrsinqdGraZyWTI5XJ4vV4MwyCXy+FyuVizZg0bN27k9ttv58SJE5w8eZLdu3ezfft2Tp8+zenTp4nFYgwODrJnzx78fj8NDQ2sX7+ej370oyxZsoR58+Z96F8TIcTFkeAkhJhVShtOp9pHdL73U7dTOj38fHOn/H4/K1asYOnSpVx33XVks1my2Sz5fJ4f/ehHnDhxgtOnT3P8+HHOnDnD1q1baWpqorq6mmg0SlNTE62trSxfvpyamhp8Pp8+Ly+ZTBIMBslkMthsNj01XfVZVVZWEovFcDqd+P1+PerAMAwKhQKGYeiDlVVYLJ3oXLp8eb5G3fP1iQkxVbP1e0aCkxBCXCR1fIxhGLhcLnw+H8Vike9+97vk83kGBgZ45ZVX6OjooK2tTS/xmaapDzKuqKjgsssuo7W1lSuuuIL6+noWLVpEMBjUIxVUM7vf76eyslKHI/j9JHU1T0qFotJQmMlkyOfzOBwO/X5CiPdGgpMQQlwgNZupdCJ6acN5f38/FRUV1NTUcNNNN2FZFul0mjNnznD48GGeeOIJ+vr6OH36ND09PfT09PD6668TCoXweDxcf/31RKNRotEoLS0tLF26lEAgoD9XLpfTIc00TR2icrkchUIBl8ulJ50bhqGrZ6pBPRgMTvm+zoajMoR4P0hwEkKIC1Q6+mDiOASbzaarQvl8Hp/Ph8PhwOfz4ff7qamp4bOf/Szd3d28+eabtLe3c+LECb1Lr6enhwcffBCfz4fH4yEajVJXV0dTUxNr165l1apVVFZW6mpUKpXS4w7UMTWlCoXCuCW/UCg06ZydiWFJwpMQEpyEEOKCne8Q44nUTj2/349lWRQKBRwOB5WVldhsNhYvXszixYuBc0tpnZ2dHDhwgI6ODo4fP87Jkyfp7Oykp6eHw4cPYxgGDz74IBUVFUQiETZs2MCGDRtobW2lrq4OgHQ6rXub1NBPODdqwTAMLMsil8tNaQDnO83HkgAl5ioJTkII8T44XyO12oGnBm/mcjncbjfFYlG/j5ps7nA48Hg8rFixghUrVpDP52lvbycWi9HX18ehQ4d44403OHToEKdOnSKbzdLT08Px48d55JFHqKmpobm5mdbWVtauXcvKlSux2+3jRi2U7jJUweq93D+pPgkhwUkIIS7YxPAxsSpjGAZ2u12fV5fNZnG5XHr5ToUqh8Ohq1HqHD2A5cuX6/e79dZbGRsbo729nS1btnD27FmOHDlCT08PyWSSnp4eTpw4wdNPP01FRQVVVVX4/X42bNjAddddR1NTk74etfz3Xk/ckrAkhAQnIYS4YOebRl5KzYfKZrP4fD69k61YLGIYBtlsFqfTqW9HVZ8Mw9DLaCp0ZTIZgsEga9eu5fLLL8fv9zMwMMDWrVs5fPgw/f39HD58mKNHj9LX10c8HieVSvHaa6/xwx/+kNraWlatWsW6detYuHAhXq+X1tbWd71+CUpCvJ0c8iu/FIQQH4LSBvKJB/5e7G0Wi0VSqRRnz56lra2NAwcOcOLECdra2ujq6mJ0dBS3243D4cDr9VJbW0tNTQ0rVqzQZ+xdeeWVuN1uMpkMLpdLLyuqz6F2EDqdTorFoq62qcOSVeiz2+26j8pms+nwqHb8maYphxuLGU0qTkII8SFRAygnHg1zodQcKLvdTigUIhQKUV9fz5o1a0gkEixYsIDdu3fz0ksvsXPnTg4fPszo6Cjd3d309PRw5MgRHXSqq6upra3liiuu4Prrr6exsZFEIoHX62VkZIS6ujpyuRy5XE4vLdrtdkzTpFgs6mVH0zT1+5zvLEAVvHK53LjhoqWkAV1cyqTiJD+YQogPSWnVCSZf6pvqbareKDWaQN1uaRN6LBbj5MmTHD9+nL1797J//36OHj2KZVkkk8lxYxNqa2txOBx8/OMfx+l00tnZyYYNG6ioqGDhwoVcdtllhEIhRkdHCQQCuvm9WCzqypPH49HBTt3n0kqTVJ7ETCUVJyGE+BC9n0/WJgYxdSixw+HQTelwLqAFg0GWL1/OlVdeya233srg4CDHjh2jp6eHnTt3snfvXo4ePUoikaC/vx/TNHn44YcBOHv2LC+//DIej4cFCxbo42Euu+wyrrzySurr63G73Tq0qetyOp1YlqWvq3REgnrbB/n1EeKDIMFJCCE+JO93KFDHp6j+oYlLXA6HY9wuPTVh3OVyEY1GqaiowOFwcPPNNzM0NER7ezuHDh2is7OTw4cPMzg4SDAY5CMf+QidnZ0MDAywa9cu9uzZQzAYpLa2lvr6ehobG1m/fj2NjY0sWLBAX5fH48Hv9+vlOTV2QYWp81WczjdM9IP6+glxISQ4CSHEDFUaPNRynQpK6gw81YukztJTAzlLP97tdlNbW0s0GmXNmjU4nU5GR0f1Ut6yZcvYvXs3Q0NDHDlyhP3793P27FkOHDjAm2++SSAQ4JVXXqG/v5/a2lrWrl3Lxz/+cYLBIIsWLSIajZJKpQD0MS+jo6NEo9Fx90eFJvUy2SHEQkwHCU5CCDFDle5sUzveSuXzeb3TTfUaGYahd7upYOJ2u3XQUhPFHQ4H1113HfF4nLKyMt18nkwm6ezs5MyZM4yOjrJz50727dtHoVCgv7+fdDpNb28vW7ZsIRwO09jYSFNTE9XV1TQ2NrJs2TKqq6uJRCKkUqlxZ/2p61R/l6Gb4lIkwUkIIWYoFXzOFzDUrCi1q01VpFS4KhaLb1s2U393uVy6WqWqT4Zh6FC1dOlSFi9ejNvt5rbbbiObzTI8PMxPfvIT+vr66O7u5sSJEwwNDXHgwAFsNhvl5eWUlZXh8/moqqqipqaGv/7rv9Y9WU6nU7+oXik1yqB0N6IQ002CkxBCzHDn6wVSgam036l0NIAKUKWVKpvNhs/nA9B9U+rf56MqWHa7nbq6Or773e9iWRZnzpzh9OnT+rDibdu26SGdo6Oj5PN5qqurefbZZwkGg1x22WWsWrWKlpYWGhoaqK6uJhwO61BlWRaZTAaHw6GHiCaTSRwOh66WqWCorjubzeJ2u/V1qvs3WfhSobP0jL/ZLJ1O61ESqg9NzeWaypyxRCKB2+3W30PZbJZisag3C8xGEpyEEEJcEBUsVHBRYwkikQg2m42rrroK0zS5+eab6enpoa+vj9dff52DBw+SzWbp7OxkZGSEzs5OXnrpJcrLy/VAzubmZux2O83NzSxfvpzy8nI9esFut+tDk1OpFIZh6AGfuVwOu92uj7YpDZFwLhipPi+v16uXO9X7WJZ10YNJZwo15FRV9/L5/NvC5rspFAoEAgEAhoaG9O5NdR7jbCXBSQghxAUprcyoUGMYhj4LT53NV1dXR11dHS6Xi49//OOMjo7i9Xr5xS9+wfHjxzly5AhnzpxhbGyMAwcO8MYbb+B0OjEMg/LycpYsWcLq1au56qqrWLhwIT6fj2KxyLx58/TBxYZhkE6nAfD7/fp1KiippUnDMHC5XLpydb6QNFeWBV0ul66wwbmvl5r9pSp378Zms5FIJPB4PJSVlY2r9qmRGLORBCchhBAXpLTBXC2pKZZl6WqGeoBWlSKv14vX6+Ub3/gGlmUxMjLC0aNHefXVV9m5cyednZ0kEgkGBwcZHh6mo6ODF198kbKyMmpqali0aBE1NTXceOON+P1+qqurdSN8OBzGZrORTqd1I7zqoVLXpXYfqgpZaUhS86bU22eziTsYS4eYTmWp0rIsHVILhQKjo6OUlZXpcxVnKwlOQgghLogKGaVLdiqY5PP5cWfUwe8PPS6tRJimid/vZ+3ataxZs4YvfelLnDp1iv7+fnbt2sWpU6c4duwYb731FsPDw5w9e5Z9+/Zht9t54IEHaGpqYtWqVTQ3N9PQ0MDy5cupra3Vy4eqB0tR4xrU8pSqtqheL7WjbzYvNSnxeByv16urb2pQqd1uJ5vNvuOROEqhUCCZTBIKhUin0wSDQXK5nJ4YP1tJcBJCCHFBShuKS6sWajJ46dEvKkypjwMYGxvD4/HoB+5sNovX66WlpQWn08lVV11FsVhkbGyMEydOcODAAQ4ePEhXVxcjIyOkUik6Ozs5dOgQNpuNUChEVVUV9fX1zJ8/n3vuuYdgMEgkEsHr9Y67blWJUkt5asmvNDzNdoFAgGQyqe9zX18fo6OjlJeXE4lEJv14u91OIpHA5XKxZcsWrrnmGgKBANFolHQ6Pe5rPptIcBJCCHFRSmcxlf47mUxit9vxeDx6AKeq8iQSCYLBIKZpkkwmgXM9N6rKkc/nqaiooFAoEIlEWLhwIddddx25XI62tjba29vp7++nr6+P1157jfb2djKZDMeOHaOtrY1wOMxzzz2nd+xdfvnlesfevHnzCAaDjI6O6uCmQtRcGn+gdlpms1lOnz7NK6+8gsvlYsOGDe94JM5ENTU15PN5Xn75ZXp7e7nuuutoamrSIXk2kuAkhBDigpim+bYxB6Wzl/x+v642qeNeVHO2zWYjl8thGIbeIVc6CsAwDIaHh/WRLdlsVvdLtba2snTpUkzTJBAI0NXVxdGjRzFNk5MnT7Jt2za6u7vZv38/fX197Nu3D6fTic/no76+nuXLl9PY2Mg111xDZWUllZWVeDweHRSmEhhmg+HhYcrLyykWi2zZsoWnnnqKm2++mbq6uikFR7Vr0TAMbr31Vl599VX++7//m8rKSu69994P6V58+CQ4CSGEuCATz8gD3tZPBL+fK6UClgpHpSMA1PuV/ru8vFzfltomX/pvNaSzqamJhQsXAufC3B//8R+TzWZ5+OGHGRsbo729nX379tHb28vIyAiHDh0im83y4x//mJqaGurr62ltbeWaa66hublZV6Hy+byukqXTaSzL0tUzFRpyuZxekioNXu/HUl82m9Xn/Km/q8ZttRSq+pTgXAUpkUgQCoX0bcTjcf1v0zR1CDUMQ48SeP755/mf//kfamtrufPOOzEMg1QqpT+3CroAg4ODVFRU6NtQPU6rV69m3bp1/PrXv+Yb3/gGZWVl3HXXXXpcRDweJxqNYlkW6XT6XeeDXeokOAkhhJiRzncgsNpBZ1kW9913HzabTfdCtbe309bWxuuvv86bb75JKBSio6OD/fv3s2XLFn7yk59QVVXFDTfcwB/+4R9is9morKykqqpKhwzTNMlms+N2DeZyOQBdKSsUCnqQ5MVwu9309fURiUT07rV8Po/NZmNsbAybzUYgENDH08RiMR1ILMsimUyOW/pUX6vS0JfP53nsscfo6enhm9/8JsFgUIcty7JIJBLjgrE6X9Dlco0bUOpyuTAMg7Vr17J+/XoefPBBLrvsMjZu3Diu3ymfz0/adH6pk+AkhBDiAzEdPUJqOc/hcDAwMEAoFMLn89HS0kJLSwupVIrTp0/T3d1NPB7nN7/5DXv37iWfz5NIJHj99ddpb2/nN7/5DdXV1VRVVdHS0sLVV1/N0qVLKSsrw263k8/n9cDIfD5PJpPRs6emMgNpKlSVplAo6DBTKBRwu92UlZXR39+vA10mk9HBzTRNUqkUZWVl5HI5XbEqPYYnk8ng8/n49a9/zfPPP4/f72fTpk26Ny0UCpHP50mn03qMhDqoub+/n/Lych3GVD9TPB5n4cKFfPazn+W+++7jf//3f9mwYQM2m21ccLrYQDndJDgJIYS4IFOZ83MxH/9elPbkqF1zqjqSyWTIZDJ6OGdzczONjY0YhsFNN92EzWbj9OnTPPPMMzz//PN0dXXR09NDW1sbhmHw29/+lnnz5jF//nyWL1/Otddey5o1a+jt7WXRokV4vV4dYBS1zHcxVEUrlUrh9/spFArEYjGqqqoYGxvDMAwGBgYIh8N6NlYymaRYLJLL5cbNrHI6naTTab2TMRQKkc1m+f73v08ymeTWW2/VoxqCwSDpdJpisUhlZSVnzpxh7969PPnkk7jdblKpFKFQiDvvvJPm5mZ9vWp5csWKFZSVlbF161a2b9/Oxo0b9f9R6U7LmbpzUYKTEEKIGam0J2piSLPZbLq6UTryQD1Yu91uXU3xeDwsWbKExsZGvvKVr3D69GkOHDjAnj17OHbsGO3t7Zw+fZoTJ06wa9cuHnnkEcrKyrjxxhtZtWoVixYtoq6ujnA4rHux1Aypi9HV1UVfXx9+v5+RkRFqa2tpbm5m586d/OpXv+L555/HMAxuv/12/vRP/5REIsGLL77I//3f/3H48GHuv/9+brjhBjKZDA8//DBbtmyhp6eHa665hm9+85vs27ePQ4cOEQ6H2bRpkw6cgUBAN/nHYjG+//3vs2XLFrLZLJ/+9Kdxu9389Kc/ZWBggK997WtUVFQQCAQIBoNYloXP56OhoYG9e/fyyCOPsHHjRh3K3G633iQwU83cKxdCCHFJ+zCW6iaGp9LKUz6f10d/qMCUz+d1Fcbr9ZLP50mlUpimidvtxuv1smTJEhYsWMA111zD0NAQ3d3dHD58mJ07d/L666/T29tLb28vp06dor6+nqqqKpYtW8aSJUu48sor+YM/+IO3NbNfiN27d/PCCy8Qj8c5dOgQP/7xj6mvr+fRRx9lz549OJ1OOjo6aGtrIxKJYFkWra2tHDx4kB07dvDAAw9QW1vLkSNHeOihhxgYGCCdTnP27FnsdjtPPfUUjY2NxONxKioq8Pv9ZLNZTNPE5/NhWRZPP/00P/rRjwgEAvzd3/0dd999N729vezfv59nn32W22+/nWAwyNjYmB4fEQ6HWb9+Pfv27WPbtm3E43F8Pt+43ZczedSDBCchhBAzWml4Kp0lpY56UT04arBlabVDBSv1oJ7JZIBzOwaj0SiRSITFixdzww038Ed/9Ee88cYb7Nq1i46ODg4ePEgikWD37t0cOHCAQCDA5s2bqa6upqGh4aJ7eT75yU/y2GOPsW3bNgKBAC0tLWzZsoXm5mY+//nP8zd/8zccO3ZM9zL5fD5WrFjB5s2befrpp9m2bZuuAN10003ccsstVFdXA+eau/fu3YvH4yEYDOoeJNXYrnqj1Pts3LiRm2++Wd/ebbfdRl9fH8uWLaO6ulp/nDo8ub6+XlesDh06xFVXXaXnY6kzBGdqeJLgJIQQYsab+CCsRiCokQil1Q71urGxMQKBgG7oVoEqnU7rpb7Sj583bx7XXnstGzZswDRN2tra6OjoYPv27Rw6dIjDhw9z8uRJ4vH4+3KfysrK9C6+YDDIE088wY9+9CPdaxSNRqmpqeGGG26gWCzidrux2Wxs3ryZ5cuXs337dl566SW+9KUv8eUvf5lwOEw2m8Vms/HSSy8Ri8Xo6Ojg1ltvJRqNMjQ0RCQSwefz6R6tgYEBPB4PXq8Xv99PIpGgrKyMz3zmM3qGk+pdUs3n+XyeWCymq3jHjx9n9erVALpf6/3oAZsuM/OqhRBCiAnOV8E4XwOyel1ZWdl5b6d0LtJEah6Vx+Nh5cqVXHHFFWzatIlTp04Rj8cpLy9nwYIFU6o2FQoF/Tmy2axe3stkMng8HrLZLEePHqWyspJiscj+/fv52c9+RnV1NS+++CJbtmwhEolw00036R4utfV/wYIFuFwuEokEn/vc53A4HAwPDxMKhejp6aGqqoqhoSH8fj8LFizQfUrqc6sjaO69916eeeYZenp6uP/++3Uv02233ca8efN0sFMjBlRYqq6upqKigsHBQU6ePKkDlloOfD+WMqeLBCchhBDiAqhlqdraWiKRiB4KqUYUTFZRKQ16pX9XwS4ejxOPx3XIWLVqFTU1Nbjdbnbu3Mno6CirV6/W85jUsEo41/yezWYJBALE43EMwyAYDJLJZKipqWHLli3AucBWXl6Ox+PRZ/apMQuDg4MMDw/T0NBAW1sbDQ0NjIyMUFVVRWNjI9dff72eIQXnQqUKSGqJNBwOjztYWZFddUIIIcQcYxiGDjw+n2/cNOypnNVWGpYcDse4Q5Aty+Lhhx9mcHCQmpoabr31Vu644w5CoRCZTIYdO3bg8Xi4/fbbicViVFdXE4/HdR+X2jEI6I/xer14PB7y+TwLFy6krKyM4eFhXR0zTVNXjpLJJA888AD//M//zPz58/n+97/PunXrqKio0OEwFovpY3XUVHJ13wuFgh5bAOeqaC6XS8+6mqn9TQAzM+4JIYQQ08zlclEsFkmn04yOjhKPxzFNE+A99e9YlqX7sYrFIjabjVgsxjPPPEMgEKC2tpa7776bUCjEyMgIzz33HAcPHsTj8bB+/Xrq6ur0JHC/38/evXvp6urSt5fP53WAKRaLelBlQ0MDHo+HoaEhUqnUuCb5/fv388ADD9DX18dtt93G9ddfT01NDX6/n4GBAUZGRsjlcvpAZzW+AH7fhO9wOEin0/r6VFVMjT2YqSQ4CSGEEBdALT+53W58Ph8ej2fc0tV7pQJHoVCgq6uLkZERGhsb+cQnPsGKFSt039HWrVtxuVx87GMfo729ndHRUXK5HNXV1XR1dbF3717+5E/+hHXr1mFZFo8++qg+xy4Wi1FeXk5/fz8VFRU4nU46Ozv1QE04VzHau3cvp0+fJhwO8/nPf14fLZPNZqmrq9NHrKhDm1XwU8t1qnpls9m48sor8fl8uFwufR9U0/1MJMFJCCGEuAAqIKlDd51Op95y/16CwcRDkhOJBHv37mVwcJCysjJuv/124NwSXiQS4ciRI+RyOY4fP87jjz/OP/3TP7Fr1y4sy+LnP/85ANdeey2bNm0ikUjw6quv8sILL/DDH/6QXbt2AVBbW6uPUTl27BgjIyPjhoaqqeUVFRX62JpEIoHL5aK7u5u/+qu/0jvogHEVJXU2YCKRoLa2lsbGRn39KlhKcBJCCCHmGJvNRrFY1A3Vqrfnvc4omlihGhkZYffu3SSTSVpaWmhubtZLgsePH+fMmTOkUincbjdr167l8ccf5ytf+Qr33nsv/f39bN68GZ/Pxx133EFTUxO7du3iv/7rv7DZbFx++eWMjIwwMjLCmjVrMAyDvr4+BgYGME1TV9FWrlxJdXU1x48f58/+7M9ob2/H6XTywAMP8A//8A+sW7cOwzBIp9OYpqkrZaZp0t/fz+7duykWi2zevFkfUKwqUnD+HYszhTSHCyGEEBdI7SAr7dtRFZXJwkHp+5feViKRoLOzk2AwyLXXXotpmgQCAWKxGEePHuXyyy9n+fLlfPrTn+aOO+6gs7OT9vZ2PB4PX//616mrq8PpdOL1evnWt77FL37xC6644gruueceAoEAY2NjeL1ebr75Zr73ve8Rj8f1cp/H48GyLJqamrj//vv53ve+R1dXF3/5l3/JVVddRTKZZPPmzVx//fV63AGge5pUD9WxY8eIRqMuCe69AAAQAklEQVR86lOf0jv21KypqXxtLmU260IXY2cQdRc/85nP8Oijj2IYBk888YQ+3FEIIYR4ry724VMFiNKglcvlOHLkCAcPHsQwDDZv3kw0GsU0TVKpFGfOnAFg2bJlul/onZT2W5We56f+dDqd/Ou//it///d/z7p163j88cfHDQ5VhyMfP36cWCzGwoULmT9/Pg6HQ8+6ymQyFAoF/H4//f39RKNRfvazn/G3f/u3fOlLX+KrX/0q5eXlpNNpvQPP6XS+7by6mfRYLBUnIYQQYhqo0JTNZvVMKJfLxbJly5g3bx6WZVFWVkYymSSXyxEOh/F6vSQSCXK53KQ79yYLdrlcjvvuu4++vj5++ctf8vzzz3P99dczPDxMIBDQIxaWLl3K2NgY8+bN04f0WpbF6Ogoo6OjNDQ0kEqlqKysJJFI8POf/5zm5mauvfZaqqqqxt1fNbbA6XRedPCcLtLjJIQQQkwDNXDS4XDo41Lg3PDK2tpaveQG6C3/LpeLQCBwQRWa0nP8bDabPhrmox/9KJWVlTz77LPE43Gi0Sgej4fBwUHy+Twej4eysjLdDK4qUeFwmAULFpDNZvH5fKTTaR577DF8Ph/f+c53WLNmDXAuoJXOeJqpgUmRipMQQghxAS52eUkFmNLKUTab1bOc1KBIn8+nD941TROXy/Wexx6o3X6lfVWRSIT+/n4+9rGPUSwWeeihh3jwwQe57rrruOKKK/QSoto1qG7H4/HgdDoZHBwkGo0yOjpKJBJh27ZtHDhwgDvvvJPVq1fjdrvJZDLkcjk90VwN5SwUCjI5XAghhBBTp44nKRQKeoceoKdrA3rIpApRataTaZrvucFahSf1d4fDgd/vx+l0ctNNN5HJZDhz5gxnz56ltbWV8vLyt32O0iGZ0WiUsbEx7HY7L7zwAi+//DKbNm1i06ZNugk8n8+Pu43SytpMJcFJCCGEmCalVR0VSkqDhWEY5z3jbSqTyc9XkSq97XQ6jWEYnDlzhurqam666SZyuRxwrunbMAxyudzbGsxLA5jD4SAajXL55ZdTVVVFS0sLTqeTgYEBysvL9TyoQqFAoVDQ1z2Tw5MEJyGEEGIaqPlHE8OEmoekluQUy7J0Y/bFNFeX9lLZ7XZqa2sBGBsb0xO+e3p6mD9/vh61oKpjEwOPYRgMDw9TV1dHfX29Xr5Tze2qSqaOolH3b6Yu04EEJyGEEGJaqEnagK70OJ1O/XrVEJ7P58cdcXIxDdalwUd9TrW7z+12616maDSqxxJM7Euy2+16GU6d16cmjquPAcYFp9LKmVpmnKlN4hKchBBCiGlQWnVRzdOKCjgOh+NtfUaqQjVZ8JhsOczj8Uz6NhWkSj8vnLt2dc3RaFS/PhKJnPf2Su9raaP5TDRza2VCCCGEEB8yCU5CCCGEEFMkS3VCCCHEDDRTl7pmOqk4CSGEEEJMkQQnIYQQQogpkuAkhBBCCDFFEpyEEEIIIaZIgpMQQkwTNShQCDFzyK46IYSYJhOPnVBngb3T24UQ009+KoUQYhqpsKSOp1BhSapRQlyapOIkhBDTpLTCVDqTR50HJoS49MhPphBCTDPLsigWi+OW6WbqAahCzHZScRJCiGmiTo4vFAoUCgV9Wr2qOJUesCqEuDRIcBJCiGlms9koFouYpollWTidTlmqE+ISJT+ZQggxTVQDuOpvUstzUm0S4tIlFSchhJgmNptNhyW3243b7dZvU7vshBCXFqk4CSGEEEJMkQQnIYQQQogpkqU6IYSYJrIUJ8TMIxUnIYQQQogpkuAkhBBCCDFFEpyEEEIIIaZIgpMQQgghxBRJcBJCCCGEmCIJTkIIIYQQUyTBSQghhBBiiiQ4CSGEEEJMkQQnIYQQQogpkuAkhBBCCDFFEpyEEEIIIaZIgpMQQgghxBTNiUN+BwYGmDdvHjabDbfbTTabJRAIkM/ncTqd03154gNkWda7vr1QKLzr2x0Oh76d0hf1Orv93Z97qI9/J3LIqxBirlC/P4vFIpZlYRgGxWKRTCaDy+UCzv1ONAyDTCaDx+OZ5is+v1kfnEzTpKKiApvNRiqVIpvNApBIJDCMWX/357zJgslUvwc+qICTz+c/kNsVQogP2mRPHCc+cS190mlZFqZpUigUME0Tn8+HzWYbF6ouVZfulb1Pcrkcbreb7u5uzp49SyAQwDRNtm7dSldXFxUVFdN9ieIDZJrmu759skBULBb1+6n3Lf27evs7mazidak+oxJCiMlMVlE3DGNcWILxv3M/8YlP4PV68Xg8mKaJw+HANE3cbvclHZxs1mS/2WeBTCbDY489xhe/+EXg3PJMeXk5w8PDl/R/jrh4ky3FTvaMSS3lqbBUGp5g8mA0WbBSFVAhhJhpJnviqZbfSn9Plv4u/cEPfsDNN99MVVUV+Xweu92u3zefz+N2uz+4i78Isz415PN5MpkMvb29FAoFXC4XXq8Xh8NBKBQilUpN9yWKD1A6nZ7uS3hXkwU3IYS4VE32xNE0zXEVJxWY7HY7NpuNXC6n2xXU69VS3aVc05n1wcmyLMrKyli5ciV33XWXXlMtFAq43W7pMZnlJqs4TfbDabPZxr3PxLLzxQYfaQ4XQsxU7zXcTGx3uOOOO6ioqCCfz2NZll6qczqdl3Qbw6xfqkskEgQCAd0YHgwGcTgcJJNJPB7PpGu0YmabbNfcZEtppaVj5b38yEwWjKTiJISY7UrbHOD3v0NzuRzFYpFsNks4HNbN4TabjUKhcMm20lyaV/U+cjqd5HI5CoUCkUhEv97hcFyy/yni/TPZ//FUQ9A7BaCpVKyEEGIuUiHofL8HLcvSVSWbzYZpmhSLRex2Oy6Xa9IntdNp1lecxORM08Rut+vqWz6fx2azSTVOCCHmMNWX9EHe/ru5VJ94SslF6D4gy7JIpVIkEgng3Fb5srKy6bw0IYQQ4pIiDRZCK23ck6VMIYQQ72QuL1bJUt0cVygU9DZQOLcmnc/ncTgcslQnhBBz2MT5S6Wvn8qRUxcbLy7VpTqpOM1xpWexwbldXk6nU3Z7CSGE0GfLTWzWnss1F3l0FHoLaOnxIpZlyYwrIYSY4yYebl76urlKmljmuNJKU2lZ1G63S9VJCCHEeXfXTSU4zdRdc5ORR8Y5buKcjUKhQD6fv6RnaAghhPhwTDwtYeLr5yIJTnPcxAZwtZtOqk1CCDG7qZMV1JEnAAMDAyQSCTo7O+nv72dwcJDf/e53+gl1LBbj9OnTvPHGG/T09OjbSiQSDA8P09/fj2VZZDIZRkdHddtHR0cHTz31FMVikZGREWD8gb/ne7lUyVKdEEIIMQepJ8ilo2d8Ph87duzgxRdfZNu2baRSKdasWcMnP/lJnnnmGX7yk5/g8/l47rnn2LBhA//4j//IZZddxiOPPMILL7zAK6+8wsqVK/n2t7/N6tWrsdlsfO1rX+Oll14iHo/T29vLPffcw1tvvUVtbe103fWL4vjOd77znem+CCGEEEJ8uCZWdeLxOH6/n5GREbLZLA8//DD9/f184QtfoFgs8tBDD5FKpaiurmbHjh289dZbhEIhNm3axJIlS2hqaqKnp4cnnngCgFWrVvEv//IvtLW1sW7dOkKhEPX19Vx55ZWEw+HpuMvvC6k4CSGEEHNUNpvF5XLp5bF8Ps/q1auprKzkP//zP+nt7aWrq4tXX32VpUuXcu+993L48GF++ctfEolEqKysxDAMHA4Hq1ev5nvf+x7bt29n69atxGIxLMvi61//OuvWraOzs5Pq6mp9sK/b7Z7uu39BpJFFCCGEmINU35JpmgAEg0EymQw2m40dO3aQz+fJ5/M888wzNDU1cffdd7N8+XJOnjyJx+OhubmZu+++m2KxyFtvvUUqlaK2tpaqqioSiQTPPfcc3/rWt9iwYQPxeJwFCxZQVlaGw+Egm81O872/cBKchBBCiDmoUCjg9XpxuVwkk0ng3E7rQqHACy+8QEdHB4ZhcPXVV/O5z32OcDhMT08PTz75pD5xwm63c+rUKRYtWkQoFCKbzbJs2TL6+vpoaWmhtbWVTCZDsVjE7XYTi8VIJpOEQqFpvvcXToKTEEIIMQeV9jgVCgWSySROp5Ph4WG6urrw+/1cffXVfPvb3+byyy/H7XYTj8fp7+8nkUhwww03AFBbW4vdbmdoaIhgMMhVV11FbW0tbrebt956C4/HQzQaJZvNEg6HKRaLOqjNRBKchBBCiDnI6XQyNjaGZVkEg0E9imb//v3s2LEDp9PJihUrWLx4MfF4nFQqxb//+7+TzWYpLy/nrrvuYmhoiGKxSCaTIRqNMjY2xqOPPsrIyAhjY2N4vV49F7BQKOjZgT6fb5rv/YWT4CSEEELMUcFgUIcZ1eT9zDPPYLfbWbBgAZ/61KeAc2MKcrkcsVgMj8dDU1MTpmkSiUQASKVSAPzHf/wHCxYsoKqqilOnTrFnzx4cDgexWAyn08nIyAgej+eSntM0GQlOQgghxBxUeoCvZVk4HA6GhoY4efIkTU1NbNq0idbWVmKxGIVCAb/fTzweZ2RkhL/4i7/gySefZHh4GLfbjc/n46c//SlPPPEEd911F2vWrGFgYIDHHnuMVCrFq6++SiqVoqKiAqfTSSwWm+67f8FkHIEQQggxB6nxA06nEzjXGH7w4EG2b99OJBJh1apVFItFAoEAqVSKH/zgB7z55ps4HA6eeuop1q9fz8MPP4xlWcybN4+HHnqIL3zhC2zYsIGOjg527NhBoVDgtdde47e//S0tLS1EIhFisRgVFRXTfO8vnAQnIYQQYo4qPXbLNE1SqRQLFiygsbGRlpYWvF4v2WwWh8NBKBSivLycoaEhLMtiw4YNfPWrX+XMmTMEAgE2btzIl7/8ZQzDoKGhgYqKCsrKyti9ezfLli0jHA5jWZY+6mWmsllz+aQ+IYQQYo4qFovY7XZyuRwul4tCocDJkyc5evQo4XCY1tZWvTzn8/kYHR3l6aefJh6Pc8stt1BZWcmvf/1r2tvbqa+v58Ybb2TevHkYhsHQ0BC/+tWviEQihMNhPvGJT1AoFLDb7bhcLmKx2IydHi7BSQghhJiD8vk8hmHoP9WBvE6nU1eZxsbGiEQimKZJOp3GMAzdKO5yuchmswwMDFBXVwecO+zX4/FgGAaFQoFMJoPX68VutxOPx3G73bjdbjKZDB6PZ5q/AhdGmsOFEEKIOchms2FZlj7k17IsLMsimUySyWQwDAOXy6UnjAcCARwOB7lcjlwuh2VZjIyMUFdXx9DQkL5du91OJpMhk8ng9/t1aPJ6vXoW1Ew9bgWk4iSEEELMWerMuHQ6jdfrBWBkZERXmUzT1OEpn8/jcrmwLAubzUY2myUYDOoqk2VZulplGIaeLj46OkooFCKRSBAMBoFzM51K+6tmEglOQgghxDSY7OF3Js86ms1kqU4IIYQQYookOAkhhBBCTJHMcRJCCCGmgSzFzUz/D/+4tJotc1EKAAAAAElFTkSuQmCC" alt="" />

  净出口函数与实际汇率

  从净出口函数可知实际汇率下降会增加净出口。但实际汇率下降或者说本国货币贬值能在多大程度上增加出口减少进口,从而改变国际收支,取决于该国出口商品在世界市场上的需求弹性和该国国内市场对进口商品的需求弹性。

净出口概述

  净出口,是一个国家出口值与进口值的差额。当中国造了一辆车卖到国外,那属于出口,我们提供了商品或者服务,收到了钱。当中国向外国买了一批衣服,这属于进口,我们得到了商品或服务,付出了钱。如果出口的比进口多,那净出口为正;如果出口的比进口的少,那净出口为负。

  净出口反向地取决于实际汇率(采用间接标价法),反向地取决于一国的实际收入。故净出口可简化地表示为:nx=a-γy+ne

  进出口指的是不同国家之间商品,劳务和资本的流动,我们又称其为国际贸易。

  人和人之间交换商品叫做交易,量大的话,就叫做贸易,如果放大到国家层面,就叫做国际贸易。

  由此可见,国际贸易是国家和贸易两个概念的叠加,是对于原本就存在于全世界各处的贸易增加了一层地理上的概念。

  国际贸易是指不同国家之间的商品和劳务交换活动,是一种传统的商业模式,包括进口贸易和出口贸易。

附件列表


0

免责声明:

  • • 会计网百科的词条系由网友创建、编辑和维护,如您发现会计网百科词条内容不准确或不完善,欢迎您联系网站管理员开通编辑权限,前往词条编辑页共同参与该词条内容的编辑和修正;如您发现词条内容涉嫌侵权,请通过 tougao@kuaiji.com 与我们联系,我们将按照相关法律规定及时处理。
  • • 未经许可,禁止商业网站等复制、抓取会计网百科内容;合理使用者,请注明来源于baike.kuaiji.com。

上一篇 附加预期的总供给函数    下一篇 索洛剩余

同义词

暂无同义词